
  

 

 

 

   

A comparative analysis of neural networks  

in financial return forecasting 

 
Master Thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Name:    Max van de Ven     Supervisor:  Walter Kohl 

Student number:  2964449        

  

 

9th of January 2020 

University of Groningen 

Faculty of Economics and Business 

Nettelbosje 2, Groningen 

The Netherlands 



2 
 

 

 

 

Abstract 
 
 

This research is a comparative analysis of neural networks in financial return forecastability. Linear 

regression models are widely used to forecast returns. These models, however, often fail to capture 

abstract and non-linear relationships inherent financial time series. Artificial neural networks (ANN) 

seem to be particularly useful to bridge this gap. Inspired by a simplification of neurons in a brain, 

ANNs are non-linear statistical models that can theoretically approximate any continuous function. In 

this study, we compare the performance of the feed-forward neural network (FNN) as well as two 

types of recurrent neural networks (RNN), among which the gated recurrent unit (GRU) and the long 

short term memory (LSTM). Each network is trained on an asset-by-asset basis using an extensive 

dataset consisting of macro-economic and market data.  By implementing a rolling-window scheme, 

we capture periodically changing predictor relationships and repeatedly forecast the returns one day 

ahead. The performance of each network is evaluated using the mean absolute scaled error (MASE), 

directional accuracy, pairwise Diebold-Mariano tests as well as a long-short risk parity portfolio 

constructed using the acquired forecasts. The results demonstrate that the RNNs tend to outperform 

FNNs. The magnitude of out performance, however, is asset-dependent. Additionally, the depth of 

each network type nor the unit architecture of RNNs tend to alter the forecasting performance 

drastically. Finally, the network-based risk-parity portfolios demonstrate strong economic benefits, but 

raises questions for future research.  
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Chapter 1 

Introduction 

The popularity of artificial neural networks is ever increasing because of their ability to effectively 

model data with very limited assumptions on the underlying distribution. The financial market is a 

domain that is immensely hard to model, in particular using classical statistical models. These 

traditional models often require an educated guess on the underlying function, before using the data 

to estimate its parameters.  In contrast, artificial neural networks use their data directly to model the 

underlying function. This allows networks to capture complex and abstract relations which traditional 

models fail to find, giving it the theoretical underpinning as ‘universal function approximator’ (Hornik 

et al., 1989; Cybenko, 1989). For this reason, artificial neural networks are widely used in a variety of 

applications, such as prediction and forecasting.  

 

The main objective of this research is to investigate the legitimacy of the efficient market hypothesis 

(or, abbreviated, "EMH") by means of artificial neural networks. In particular, we try to determine 

which network type and architecture is best equipped to exploit possible inefficiencies. We select a set 

of candidate neural networks that are potentially well suited to forecast asset returns. These include 

the feed-forward neural network and various recurrent networks, among which the gated recurrent 

unit (GRU) and long short term memory (LTSM). Taken in mind that highly noisy data from financial 

sources makes it hard to perform reliable experiments, we consider different model architectures and 

aim to fully optimize them before comparison. The forecasting power of each model will be compared 

using various metrics, as well as their performance on a long-short portfolio, which will be optimized 

using the acquired forecasts.  

 

It should be noted that this is not an exhaustive analysis of all methods. For example, we exclude 

sparsely connected network architectures because of their arbitrarily chosen design.  Nevertheless, 

our research is designed to be representative of predictive possibilities of the conventional toolkit of 

artificial neural networks. 
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1.1 Research questions 

In particular, we will limit our research to the following set of questions: 

 

1. Given a particular feature setup, are certain neural network types better equipped to predict 

future returns than others? 

2. How does the depth of the various neural networks affect its predictive power? 

3. Is it possible to build a successful trading strategy based on the predictions of each network?  

 

The research will therefore provide us with interdisciplinary results covering modern machine learning 

and traditional finance empirics, such as portfolio theory and the efficient market hypothesis. 

 

1.2 Related work 

Various comparative work has been done on the intersection between machine learning and return 

forecastability. Gu, Kelly and Xiu (2018) investigate and compare the performance of a wide variety of 

machine learning methods in forecasting returns primarily using company-level characteristics. Their 

comparative analysis shows that the return forecasting ability of feed-forward neural networks 

outperforms classical linear models as well as other machine learning methods, such as random forests 

and generalized linear models. This result has been attributed to the ability of feed-forward neural 

networks to capture complex interactions among predictor variables, which other methods failed to 

identify. Abe and Nakayama (2018) validate these results and, additionally, find that deeper feed-

forward networks tend to outperform their shallow counterpart. Our thesis serves as a direct extension 

on their work by investigating the forecasting abilities of different types of artificial neural networks, 

among which the recurrent neural network, with various levels of depth.  

 

We distinguish ourselves by applying a computationally demanding rolling window scheme, where a 

window of 𝑡 days is used to forecast the return of the (𝑡 + 1)st day. This allows us to accurately capture 

periodically changing predictor relationships. In addition, instead of grouping financial assets together 

like Gu et al. (2018), we train networks and generate forecasts for each financial asset separately. This 

allows us to distinguish between the heterogeneous predictor relationships of each financial asset 

under consideration. Furthermore, instead of company-specific data, this research uses an extensive 

predictor set consisting of both macroeconomic data, such as consumer confidence and inflation, and 

market data such as yield curves, foreign exchange rates and momentum. Lastly, we apply a distinct 

long-short portfolio approach to access the comprehensive performance of each network.  
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1.3 Outline 

This thesis is organized as follows. In Chapter 2, we discuss the empirical models, which form the basis 

of our comparative analysis, and the main architecture of the networks. In Chapter 3, we discuss the 

data and the methodology for training and selecting the various networks. In addition, we introduce 

the metrics used to evaluate the forecasting performance of each network. In Chapter 4, the results 

are presented, followed by an analysis. Finally, we conclude and discuss our limitations in Chapter 5.  
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Chapter 2  

Empirical models 

In this section, we elaborate on the neural networks employed in this study. First, we will explain the 

functionality of the feed-forward neural network. Then, we will discuss recurrent neural networks, 

including the simple recurrent neural network, the long short term memory and gated rectified unit. 

Lastly, we elaborate on the network selection and architecture.   

 

2.1 Feed-forward neural network 

Artificial neural networks (ANNs) are mathematical simplifications of our central nervous system. 

These networks consist of interconnected groups of artificial neurons (or, synonymously, “nodes”). In 

feed-forward neural networks, these nodes are organized in the form of layers. The information moves 

progressively from the input layer, through the hidden layer (if any), to the output layer.  

 

Figure 1: Feed-forward network without hidden layer 
 

 

Input layer 

 

 

 

 

 

 

 

Output layer 

 

 

 

 

 

 

 

Fig. 1 displays a feed-forward network without a hidden layer. The input layer is a vector defined as 

𝑋 = [𝑥0, 𝑥1, … , 𝑥𝑛]′. The first element of this vector 𝑥0 is the bias node which is conveniently set to 

one. The other elements 𝑥𝑗 for 𝑗 ∈ {1,2,… , 𝑛} are predictor values. Each line connecting one of the 

input units to an output node is assigned a weight, given by the weight vector ω = [w0, w1, … ,wn]′. 

These weights amplify or attenuate the input signals. The weighted signal (or, synonymously, 

“activation value”) is therefore calculated as follows: 

 

. . . . 𝑥1 𝑥𝑛 

𝑦̂ 

1 

𝑤1 𝑤2 𝑤3 𝑤𝑛 .  . 𝑤0 
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𝐴 =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=0

 ⟺∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

+𝑤0  ⟺ ω ∙ 𝑋 (2.1) 

 

where 𝑥0 = 1 and, consequently, 𝑤0 is the bias term (or, synonymously, “intercept"). This bias term is 

analogous to the off-set of an ordinary least squares regression and allows for the shifting of the 

activation function.  

 

Based on the weighted signal of equation (2.1), the activation function determines whether or not the 

output node is being activated.  This is expressed as follows: 

 

ŷ = 𝜑(𝐴)  ⟺  𝜑(ω ∙ 𝑋) (2.2) 

 

where 𝜑(∙) is an activation function.  Note that, in case of a linear (or, synonymously, “identity”) 

activation, the simple neural network results in a linear regression model: ŷ = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 +𝑤0. 

Usually, however, non-linear activation functions are used to generate non-linear mappings from 

inputs to output. 

 

Figure 2: Feed-forward network with one hidden layer 

 

 

Input layer 

 

 

 

Hidden layer 

 

 

 

Output layer 

 

 

Fig. 2 displays a feed-forward neural network with one hidden layer. Adding hidden layers typically 

allows the model to capture more abstract and complex relationships between inputs and outputs. 

Similar to equation (2.2), the nodes in the hidden layer linearly extract information from the input 

layer. Then, each node applies an activation function to its weighted input. Finally, the activations are 

aggregated into an ultimate forecast output, as such: 

 

. . . . 

. . . . 

𝑥2 𝑥3 𝑥1 

𝑦̂ 

 

ℎ1 

ωx 

ωy 

1 

1 

ℎ2 ℎ3 ℎ𝑘 

𝑥𝑛 
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ŷ = 𝜑(∑𝑤𝑗,𝑦

𝑘

𝑗=0

ℎ𝑗)   ⟺   𝜑(ωy ∙ H) 
(2.3) 

 

where 

hj = 𝜑(∑𝑤𝑖𝑗,𝑥  𝑥𝑖

𝑛

𝑖=0

) , 𝐻 = 𝜑(ωx ∙ X) (2.4) 

 

The appropriate weight parameters  are set by means of a learning algorithm. This also holds for the 

to-be discussed networks. We will come back to this in Section 2.5 and 2.6.  

 

2.2 Recurrent neural network 

Usually lagged predictor variables are included in feed-forward neural networks to capture time 

dependencies inherent financial data. Unfortunately, the appropriate number of lags is typically 

unknown. Consequently, a lagged dependent structure in a feed-forward network might be unable to 

accurately explain the behaviour of the predicted variable. To circumvent this problem, researchers 

have come up with various networks that have internal feedback loops. These are called recurrent 

neural networks (RNN) and are based on the seminal work by Rumelhart, Hinton and William (1986). 

RNNs can be thought of as a sequence of feed forward networks with the property that output at one 

time step serves as a supplementary input the next time step. 

 

2.2.1 Simple recurrent neural network 

Simple RNNs model time dependencies (or, synonymously, “memory”) by maintaining a hidden state. 

This is displayed in Fig. 3. The state of the hidden layer at the current time instant 𝐻𝑡 uses the hidden 

state at the previous time instant 𝐻𝑡−1 as a supplementary input. This enables the model to capture 

potential temporal relationships. Mathematically, this is expressed as follows: 

 

Η𝑡 = 𝜑(𝜔ℎ ∙ Η𝑡−1 +𝜔𝑥 ∙  Xt) (2.5) 
 

where Ηt and Ηt−1 are vectors of the current and previous state of the hidden layer, 𝑋𝑡 is the current 

input vector and, similar to the feed-forward network, the weight matrices 𝜔𝑥 and 𝜔ℎ control the 

degree of significance to accord to both the present input and the past hidden state. Ultimately, the 

output forecast can be calculated as: 

 

𝑦̂𝑡 = 𝜑(𝜔𝑦 ∙ Η𝑡) (2.6) 
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Figure 3: Simple RNN with one hidden layer 
 

 

Input layer 
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The simple RNN is plagued with a couple of problems. Firstly, the performance of the simple RNN is 

strongly tied to the length of the sequence. The selected amount of time steps determine how far back 

in time the model goes to find time dependencies. For instance, the simple RNN displayed in Fig. 3 has 

three time steps. Once the time steps become too long, however, errors further back in time pass 

through an elongated chain of derivatives when applying the learning algorithm (see Section 2.6; 

Appendix 4). This so-called vanishing gradient problem causes long-term dependencies to be hidden 

by the effect of short-term dependencies. Secondly, it is worth noting that simple RNNs gradually 

accumulate information over time. This, however, is sub-optimal in the domain of financial time-series 

analysis which deals with highly non-stationary data. Alternately, we would like to forget periods where 

the distribution of the data strongly deviates from the current distribution. To achieve this, and circumvent 

the long-time dependency problem, this research focusses on a couple of modified RNNs, including the 

long short term memory and gated recurrent units. 

  

𝜔𝑥  

Η𝑡−2 

𝑋𝑡−1 𝑋𝑡 𝑋𝑡−2 

Η𝑡−1 Η𝑡 

𝑦̂𝑡 

𝜔𝑥  𝜔𝑥  

𝜔𝑦 

𝜔ℎ  𝜔ℎ  
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2.2.2 Long Short Term Memory 

The long short term memory (LSTM) is a recurrent neural network introduced by Hochreiter and 

Schmidhuber (1997).  LTSM networks consists of  a memory cell, called the carry state, which flows 

through the sequence of networks. The carry state is carefully regulated by structures called gates, which 

control the extent to which information flows in and out of the carry state. In contrast to simple RNNs, 

this carry dataflow allows the network to capture autoregressive structures of arbitrary lengths. 

 

Similar to the simple RNN, the input at the current time step,  𝑋𝑡,  and the hidden state of the previous 

time step, 𝐻𝑡−1, are fed into the LTSM. Unlike regular nodes, a LTSM unit consist of the following 

system of equations: 

 

{
  
 

  
 
 𝑓𝑡 = 𝜎𝑔(𝜔𝑓,ℎ ∙ 𝐻𝑡−1 +𝜔𝑓,𝑥 ∙ 𝑋𝑡)

 𝑖𝑡 = 𝜎𝑔(𝜔𝑖,ℎ ∙ 𝐻𝑡−1 +𝜔𝑖,𝑥 ∙ 𝑋𝑡)

  𝑜𝑡 = 𝜎𝑔(𝜔𝑜,ℎ ∙ 𝐻𝑡−1 + 𝜔𝑜,𝑥 ∙ 𝑋𝑡)

𝐶̃𝑡 = 𝜑(𝜔𝑐,ℎ ∙ 𝐻𝑡−1 +𝜔𝑐,𝑥 ∙ 𝑋𝑡)

 𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ 𝐶̃𝑡               

 𝐻𝑡 = 𝑜𝑡  ∘ 𝜑(𝐶𝑡)                             

 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

 

where 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are the forget, input and output gate, respectively,  𝐶̃𝑡 is the candidate memory, 𝐶𝑡 

is the carry state, 𝐻𝑡 the hidden state at the current time instant, 𝜎𝑔 is the sigmoid activation function 

and the operator ∘ denotes the entry wise product (or, synonymously, “Hadamard product”).1 Note 

that the gates and candidate memory are constructed by feeding the input through a distinct fully 

connected layer before applying an activation function.  

 

Taken in mind that 𝜎𝑔(𝑥) ∈ [0,1], the gates modulate the flow of information inside the unit by means 

of three entry wise products. Firstly, the entry wise product of the previous carry state 𝐶𝑡−1 with the 

forget gate 𝑓𝑡 in equation (2.11) is a way to remove irrelevant information from the carry dataflow. 

Secondly, the entry wise product of the input gate 𝑖𝑡 with the vector of candidate values 𝐶̃𝑡 in equation 

(2.11) updates the carry dataflow with new information. Finally, the entry wise product of the output 

gate 𝑜𝑡 with the activated new carry state 𝜑(𝐶𝑡) in equation (2.12) regulates what part of the carry 

dataflow is used to create the current hidden state, 𝐻𝑡.  

 

 

                                                           
1 The sigmoid activation function is defined as 𝜎𝑔(𝑥) =

1

1+𝑒−𝑥
  which squishes the elements of the gate vectors 

between 0 (“irrelevant”) and 1 (“relevant”). 
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2.2.3 Gated Recurrent Units 

Cho, et al. (2014) developed an alternative to the LTSM called the gated rectified unit (GRU).  Similar 

to LSTM units, the GRU has gates that regulate the flow of information inside the unit, however, 

without having a distinct memory cell.  The GRU unit consists of the following system of equations: 

 

{
 
 

 
 
𝑧𝑡 = 𝜎𝑔(𝜔𝑧,ℎ ∙ 𝐻𝑡−1 +𝜔𝑧,𝑥 ∙ 𝑋𝑡)          

𝑟𝑡 = 𝜎𝑔(𝜔𝑟,ℎ ∙ 𝐻𝑡−1 +𝜔𝑟,𝑥 ∙ 𝑋𝑡)         

 𝐻̃𝑡 = 𝜑(𝜔ℎ,ℎ ∙ (𝐻𝑡−1 ∘ rt) + 𝜔ℎ,𝑥 ∙ 𝑋𝑡)

 𝐻𝑡 = 𝑧𝑡 ∘ Ht−1 + (1 − 𝑧𝑡) ∘ 𝐻̃𝑡             

 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

 

where 𝑧𝑡 and 𝑟𝑡 are the update and reset gate, respectively, and  𝐻̃𝑡 is the candidate hidden state. 

Again, the gates and candidate hidden state are constructed by feeding the input through a distinct fully 

connected layer before applying an activation function.  

 

Similar to the LTSM unit, the gates regulate the flow of temporal information by means of entry wise 

products. Firstly, the candidate hidden state 𝐻̃𝑡  of equation (2.15) is shaped by the entry wise product 

of the reset gate 𝑟𝑡 with the previous hidden state 𝐻𝑡−1. Whenever the elements of the reset vector 𝑟𝑡 

are close to one, we retrieve the conventional hidden state of equation (2.5). However, for elements 

of 𝑟𝑡 that are close to zero, the pre-existing memory ‘resets’. This effect therefore resembles the forget 

gate of the LTSM unit. Secondly, the hidden state 𝐻𝑡 of equation (2.16) is a linear interpolation of the 

prior hidden state Ht−1 and candidate hidden state 𝐻̃𝑡, controlled by the update gate 𝑧𝑡. Whenever an 

element of the update vector 𝑧𝑡 equals one, the prior hidden state is preserved while effectually 

disregarding any new information of the current time step. On the other hand, for elements of the 

update vector close to zero, the hidden state is updated with new information from the candidate 

state 𝐻̃𝑡. The update gate can therefore be regarded as a combination of the input gate and forget 

gate of the LTSM unit. 

 

There are a few advantages of using GRU units over to LSTM units. Firstly, GRU units regulate the 

intertemporal information transfer utilizing only two gates - instead of three gates in LSTM units. This 

reduces training time as there are fewer to be estimated parameters. Secondly,  GRU units have shown 

to exhibit better performance than LTSM units in certain applications outside of the financial realm 

(Chung et al., 2014).2 

                                                           
2 It is worth noting, however, that the literature has not reached a consens on this matter. For instance, Greff et 

al. (2017) demonstrate that none of the RNN variants improve upon the standard LSTM units significantly. 
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2.3 Neurons and layers 

The amount of neurons in each layer, the number of hidden layers and the connectedness of each 

layer are essential parts of the overall architecture and strongly tied to the performance of the 

network. 

 

Firstly, the number of neurons in each hidden layer is closely related to under and overfitting (Heaton, 

2015). Overfitting occurs when the neural network has too many degrees of freedom, allowing the 

model to capture relationship based on the noise or randomness inherent the training data. Similarly, 

underfitting occurs when there are too few neurons in the hidden layers to adequately capture 

abstract and complex relationships in a data set. Both scenarios generally result in poor generalization 

performance of the model. For this reason being, we run a search algorithm to find the optimal number 

of neurons for the first hidden layer (see Section 2.9). To economize on computational cost, the 

amount of neurons in hidden layers thereafter (if any) are determined by a popular rule-of-thumb 

called the geometric pyramid rule (Masters, 1993).  

 

Moreover, the number of hidden layers in the network affects its ability to capture complex and 

abstract relationships. It has been shown that deeper networks can achieve the same performance 

with considerably fewer parameters (e.g. Cohen et al., 2015; Eldan and Shamir, 2016). However, 

training a deeper neural network is challenging for a few reasons. Firstly,  deeper networks overfit with 

diminished effort because of their ability to capture abstract relationships with more ease. Secondly, 

the learning algorithm of deeper networks requires the multiplication of an elongated chain of 

derivatives, potentially resulting in exploding or vanishing gradients (see Appendix 4).  Finally, the 

multidimensional error plane becomes increasingly non-convex as network depth increases (see 

Section 2.6). Hence, to infer the trade-off of network depth in the return forecasting problem, we 

compare the performance of several network depths.  

 

Lastly, it is worth noting that all architectures are fully connected, implying that each node receives 

inputs from all nodes in the earlier layer.  

  



15 
 

2.4 Activation function 

Based on the weighted signal, the activation function determines whether or not the output node is 

being activated. As a neural network without an activation function can be regarded as a linear 

regression model, the purpose of the activation function is to introduce non-linearity. The most 

popular activation in the literature is known as the rectified linear unit developed by Hahnloser et al. 

(2000), calculated as:  

 

𝑅𝑒𝑙𝑢 (𝑋) = max  (0, 𝑋) = {
𝑋       𝑖𝑓 𝑋 > 0 
0       𝑒𝑙𝑠𝑒          

 (2.17) 

 

This activation function tends to enhance the performance of many deep networks, both in the sense 

of computational efficiency and accuracy (e.g. Hahnloser et al., 2000; Jarrett et al., 2009; Nair and 

Hinton, 2010; Glorot et al., 2011).3 We adopt the same activation function across all hidden nodes, 

unless explicitly stated otherwise in earlier sections. 

 

2.5 Objective function 

To evaluate the performance of the networks, we introduce an error function (or, synonymously, 

“objective function”). The traditional error function for regression problems is the mean-squared error. 

The mean-squared error measures the average of the squared difference between the known return 

𝛾𝑖,𝑡+1 and the forecasted return 𝛾𝑖,𝑡+1(𝜔) of financial asset 𝑖 at time 𝑡. It is defined as:  

 

ℒ(𝜔) =
1

𝑇
 ∑(𝛾𝑖,𝑡+1(𝜔) − 𝛾𝑖,𝑡+1)

2
𝑇

𝑡=1

 (2.18) 

 

2.6 Parameter optimization 

2.6.1 Gradient descent 

The main problem is to find the weight parameters of the neural network 𝜔 that minimize the value 

of the error function ℒ(𝜔). This can be achieved by applying optimization theory. Given that ℒ(𝜔) is 

a differentiable and continuous function of 𝜔, we can calculate the gradient ∇ℒ(𝜔) as: 

 

∇ℒ(𝜔) = [
𝜕ℒ(𝜔)

𝜕𝑤1
, … ,

𝜕ℒ(𝜔)

𝜕𝑤𝑗
]

′

 (2.19) 

                                                           
3 The low computational cost stems from the fact  that the activation function is easily differentiable, which 

reduces the time it takes to recursively approximate the gradient (see Section 2.6; Appendix 4). 



16 
 

 

were 𝜕ℒ(𝜔) 𝜕𝑤𝑗⁄  is the partial derivative of ℒ(𝜔) w.r.t. the 𝑗-th weight parameter. The gradient is 

evaluated using an algorithm called back propagation (see Appendix 4). 

 

The gradient ∇ℒ(𝜔) is a vector that points in the direction of the greatest ascent. We can therefore 

minimize the error function by repeatedly taking steps in the opposite direction of the gradient. This 

algorithm is called gradient descent and is expressed as follows:   

 
𝜔𝜏+1 = 𝜔𝜏 − η∇ℒ(𝜔𝜏) (2.20) 

 

where 𝜏 is the iteration and η is a hyper parameter known as the learning rate that determines the 

velocity of the descent.  After an adequate amount of iterations,  the algorithm will reach a point 𝜔𝜏 

where ∇ℒ(𝜔𝜏) = 0.4 This is called a stationary point, representing a local extreme or saddle point.  

Generally, loss functions of neural networks are highly non-convex with multiple local extrema and 

saddle points. 

 

2.6.2 Stochastic gradient descent 

Two problems rise to the surface when applying true gradient descent. Firstly, the error function ℒ(𝜔) 

and the associated gradient ∇ℒ(𝜔) are calculated with respect to the entire training dataset 𝒟 at every 

iteration. This is incredibly time consuming when working with large datasets. Secondly, local minima 

are rare in high dimensional non-convex error surfaces while saddle points generically proliferate 

(Dauphin et al., 2014). That is, as dimensionality increases, the chance that all the directions around a 

stationary point have a positive curvature decreases exponentially. This therefore requires an 

algorithm that abstains from stranding in saddle points.  

 

To economize on the computational cost and address saddle points, we implement a modification of 

the algorithm called stochastic gradient descent (Bottou et al., 1998). As displayed in Fig 4, stochastic 

gradient descent uses a random subset of the training dataset (or, synonymously, “batch”) to 

approximate the true gradient ∇ℒ(𝜔) at every iteration. This is expressed as follows: 

 

𝜔𝜏+1 = 𝜔𝜏 − η∇ℒ(𝜔𝜏, 𝑏𝜏) (2.21) 
 

where ∇ℒ(𝜔𝜏, 𝑏𝜏) is the gradient of the loss function evaluated on batch 𝑏𝜏 from the training set 𝒟.5  

                                                           
4   Ignoring the effects of the learning rate for the time being. 
5  The temporal order of the financial time series is pivotal as the next data point could could be influenced by 

the previous one. Thus, even though the batch is randomly selected at each iteration, we do not allow for 
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If the batch-size ℬ is equal to 1, the true gradient is approximated by single training point at each 

iteration. This might lead to very noisy gradients which are poor approximations of the true gradient – 

and lead us to the wrong direction. Meanwhile, if ℬ consist of the entire dataset, we are back at square 

one. Hence, a compromise is reached when the batch size is in the midst of these extremes. Here, the 

approximation sacrifices accuracy for massive acceleration of the recursive process. While, at the same 

time, reasonable levels of noise in the sample gradient enables it to escape saddle points (Dauphin et 

al., 2014; Ge et al., 2015).    

 

Both the learning rate η and the batch-size ℬ are hyper parameters which are optimized using a search 

algorithm (see Section 2.9). 

 

Figure 4: Comparison of true- and stochastic gradient descent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: this figure shows a simplified example of true (left) and stochastic (right) gradient descent. Shown are the contours 

of a loss function ℒ(𝜔) with 𝜔 = [𝑤1, 𝑤2]′, which is minimized at point A. The noise of the gradient approximation causes 

the trend to alter from the direction of the greatest ascent at each iteration – allowing it to escape saddle points.  

 

2.7 Optimizers 

The performance of the gradient descent algorithm strongly depends on the decided upon learning 

rate. If the size of the learning rate is too small, convergence is very time-consuming. On the other 

hand, if the size of the learning rate is too large, the algorithm might overshoot and oscillate around 

the minima. Thus, a corrective measure is to fine-tune the learning rate at various epochs of the 

algorithm.  

 

                                                           
shuffling. Taken in mind that our predictor set consists of, among others, quarterly released predictor values, 

this requires a batch-size which is sufficiently large to capture signals. 

𝑤2 

𝑤1 

𝐴 𝐴 

𝑤2 

𝑤1 
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2.7.1 AdaGrad 

The adaptive gradient algorithm (AdaGrad) developed by Duchi, Hazan and Singer (2011) is a mutation 

of the stochastic gradient descent with a parameter-specific learning rate. The per-parameter update 

of the AdaGrad algorithm is as follows:  

 

𝜔𝜏+1,𝑗 = 𝜔𝜏,𝑗 − η
1

√∑ 𝑔𝜏,𝑗
2𝑡

𝜏=1

 𝑔𝜏,𝑗 (2.22) 

 

where 𝑔𝜏 = ∇ℒ(𝜔𝜏), the gradient, and 𝑔𝜏,𝑗 = 𝜕ℒ(𝜔𝜏) 𝜕𝑤𝑗⁄ , the partial derivative, at iteration 𝜏. The 

denominator accumulates the squared value (or, synonymously, “ℓ2 norm”) of previous derivatives 

over all elapsed iterations, 𝑡. The learning rate η is then scaled by the inverse of this magnitude. 

Consequently, parameters that experience small (large) updates receive larger (smaller) learning rates. 

In addition, the accumulation of derivatives in the denominator reduces the learning rate over time 

(Zeiler, 2012). Both effects tend to improve convergence performance over standard stochastic 

gradient descent. Particularly in situations where data is sparse and sparse parameters have more 

explanatory power (Gupta, Bengio and Weston, 2014). 

 

2.7.2 RMSProp 

In the AdaGrad method the denominator accumulates the squared gradients from all elapsed 

iterations, causing it to grow through-out the entire training period. After many iterations this results 

in an infinitesimal learning rate - potentially before actually reaching a minima. The RMSprop optimizer 

is a method that aims to curtail this expeditious, consistently decreasing learning rate (Tieleman and 

Hinton, 2012). Instead of accumulating all past squared gradients, the accumulation in RMSprop is an 

exponentially decaying average of the squared gradients. This allows learning to continue even after 

many iterations have elapsed.  The average depends on the current gradient and the previous average:  

 

𝔼[𝑔2]𝜏,𝑗 = 𝜆 𝔼[𝑔
2]𝜏−1,𝑗 + (1 − 𝜆) 𝑔𝜏,𝑗

2  (2.23) 

 

where 𝜆 is the decay constant, which is set equal to its default value 𝜆 =  0.9. This parameter 

determines the length of the gradient window that truly influences the learning rate. Similar to 

equation (2.22), the per-parameter updated is then calculated as follows: 

 

𝜔𝜏+1,j = 𝜔𝜏,𝑗 − η
1

√𝔼[𝑔2]𝑡,𝑗

 𝑔𝜏,𝑗 (2.24) 
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2.7.3 ADAM 

The most prominently used optimizer is the adaptive moment estimation (ADAM) developed by 

Kingma and Ba (2014). The ADAM optimizer keeps track of running averages of both the first and 

second order moment of the gradients, as such: 

 

𝔼[𝑔]𝜏,𝑗 = 𝜆1 𝔼[𝑔]𝜏−1,𝑗 + (1 − 𝜆1) 𝑔𝜏,𝑗 (2.25) 
 

𝔼[𝑔2]𝜏,𝑗 = 𝜆2 𝔼[𝑔
2]𝜏−1,𝑗 + (1 − 𝜆2) 𝑔𝜏,𝑗

2  (2.26) 
 

Taken in mind that the initial values of 𝔼[𝑔]𝜏,𝑗  and 𝔼[𝑔2]𝜏,𝑗 are zero, they will be biased towards zero 

when the decay constants are large. To correct for this, the mean and variance are calculated as 

follows:  

𝔼[𝑔]𝜏,𝑗̂ =
𝔼[𝑔]𝜏,𝑗

1 − 𝜆1
 (2.27) 

 

𝔼[𝑔2]𝜏,𝑗̂ =
𝔼[𝑔2]𝜏,𝑗

1 − 𝜆2
 (2.28) 

 

Similar to equation (2.22) and (2.24), the per-parameter updated is then calculated as follows: 

 

𝜔𝜏+1,𝑗 = 𝜔𝜏,𝑗 − η
1

√𝔼[𝑔2]𝜏,𝑗̂
 𝔼[𝑔]𝜏,𝑗̂  

(2.29) 

 

Clearly, the learning rate is scaled by the inverse of the squared gradients just like RMSprop. 

Additionally, the optimizer takes advantage of momentum by using moving average of the gradient 

instead of gradient itself. Following common practice, the hyper parameters 𝜆1 and 𝜆2 are set to its 

default values of 0.9 and 0.99, respectively.  

 

2.7.4 Remarks  

It is not entirely clear whether widely-used adaptive methods like ADAM, Adagrad and RMSProp 

actually stimulate out-of-sample performance. Even though many adaptive optimizers tend to 

enhance training performance, Wilson et al. (2017) and Keskar et al. (2017) demonstrate that adaptive 

methods generalize significantly worse compared to vanilla stochastic gradient. Taken this into 

account, we implement a search algorithm to determine the optimal optimization algorithm (see 

Section 2.9). 
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2.8 Regularization 

Training the model is equivalent to minimizing the loss function, which assures that the model fits the 

training set as well as possible. This, however, also allows the model over fit and learn the 

idiosyncrasies of the training set. As a consequence, the model might not generalize well. That is, it will 

perform poorly when we apply the model on data it has never seen before to generate forecasts. To 

prevent this from occurring, we put constraints on the complexity of the neural networks.  These 

constraints aim at making the model generalize better. 

 

2.8.1 Weight regularization  

A typical way to mitigate over fitting is by forcing the weight parameters of the network to take on 

small values.6 This is called weight regularization, and is accomplished by adding to the loss function a 

penalty term associated with having large weights: 

 

ℒ𝑝(𝜔, λ1, λ2) = ℒ(𝜔) + 𝜙(𝜔, λ1, λ2) (2.30) 
 

There are various choices for the penalty term 𝜙(𝜔, λ1, λ2). This paper employs the elastic net penalty, 

which takes the form: 

𝜙(𝜔, λ1, λ2) = λ1∑|𝜔𝑗|

𝑃

𝑗=1

+ λ2∑𝜔𝑗
2

𝑃

𝑗=1

 (2.31) 

 

The elastic net is composed of two popular regularizers whose penalty strength is determined by the 

two hyper parameters λ1 and 𝜆2. The case were λ1 ≠ 0 and λ2 = 0 corresponds to the lasso regression 

and uses the ℓ1-norm (or, synonymously, “absolute value penalty”). The ℓ1-norm shrinks the weights 

by a constant factor and forces a subset of weight parameters to exactly zero. In this sense, it 

compresses the network to a smaller number of high-importance connections. The case were λ1 = 0 

and λ2 ≠ 0 corresponds to ridge regression and uses the ℓ2-norm (or, synonymously, “squared value 

penalty”). The ℓ2-norm shrinks the weights by a factor proportional to 𝜔𝑗, preventing weights from 

becoming disproportionately large in magnitude. However, it does not impose sparsity like the ℓ1-

norm. If both λ1 ≠ 0 and λ2 ≠ 0, the elastic net favours simpler models through both shrinkage and 

sparsity. Both hyper parameters λ1 and 𝜆2 are optimized using a search algorithm (see Section 2.9). 

  

                                                           
6 In a nutshell, if weight parameters are smaller, the outcome of the neural network has more stability. In 

particular, small changes of the input will result in small changes of the output. This makes it harder for the 

network to learn the noise inherent the training dataset.  
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2.8.2 Ensemble training 

We aim to improve the results of each neural network by adopting an ensemble method. In particular, 

we start the optimization algorithm at multiple random locations and construct an ultimate forecast 

by averaging forecasts over all randomly initialized networks.7 Given the stochastic nature of the 

optimization process, different weight initializations tend to bring about different forecasts. By 

averaging forecasts over all randomly initiated networks, the ensemble approach reduces prediction 

variance. In turn, it may provide us with a better approximation of the true unknown function 

(Dietterich, 2000). 

 

2.8.3 Early stopping 

Early stopping is a regularization algorithm which prevents the network from over fitting. The weight 

parameters are iteratively adjusted with the ultimate objective of minimizing the loss function over 

the training sample. After each adjustment, the predictions of the network are evaluated over a fixed 

set of examples not from the training set - the validation set. The error on the validation set calculated 

using equation (2.18) serves as a proxy for the generalization error. This provides us with an indication 

of when over fitting has started. The optimization is discontinued when the validation errors starts to 

increase, as displayed in Fig. 5. 

  

                                                           
7 To intiailize weights randomly, we use the He initializer (He et al., 2015). This is an extension of the Xavier 

initializer (Glorot and Bengio, 2010) particularly designed for ReLu activation. This assures faster convergence 

and prevents activations from vanishing or exploding. The He initializer draws sample weights from a truncated 

normal distribution: 

𝑁(0,√
2

𝑛(𝑙−1)
) 

 

were 𝑛(𝑙−1) is the number of incoming network connections.  
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Figure 5: Early stopping 

 

 

 

 

 

 

 

 

In practice, the validation error does not mature as smoothly. Instead, the validation error tends to 

evolve in a highly non-convex manner. Thus, to prevent the call back from stopping to early, we define 

a patience. This is an interval of iterations over which we allow the validation error to see no 

improvement, without triggering the early stopping mechanism.  

 

2.9 Hyper parameter tuning 

Hyper parameter tuning amounts to searching for optimal hyper parameters that tend to produce 

satisfactory out-of-sample forecasts. The literature typically employs Grid Search in order to do so. This 

is an exhaustive search through a manually specified subset of the hyper parameter, in which all hyper 

parameter combinations are evaluated on a held-out validation set. This algorithm, however, suffers 

from the curse of dimensionality making it computationally intensive. To enhance efficiency, we adopt 

the Random Search algorithm proposed by Bergstra and Bengio (2012).  Instead of an exhaustive 

enumeration, this algorithm selects various random parameter combinations. The random 

combinations are drawn from pre-defined marginal distributions, which allows for the inclusion of 

prior knowledge. When not all parameters are equally relevant in optimization, it has been shown to 

outperform Grid Search using the same amount of resources (Bergstra and Bengio, 2012). The hyper 

parameter setting is summarized in Appendix 2. 

  

Validation 

Training 

Error 

# Iterations Early stop 
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2.10 Scaling 

A common data pre-processing step is feature scaling. Before feeding the input through the network, 

the range of values that each feature can attain is normalized. The main objective of rescaling is to 

enhance optimization. In particular, when employing gradient descent, the weight updates are 

dependent on the values of the features itself. As a result, certain weights update faster than others 

solely because of scaling differences. This might lead to oscillation around a minimum and elongation 

of the optimization procedure, as shown in Fig. 6. Feature scaling could therefore enhance 

convergence speed, particularly if the scale of feature values are dissimilar. The most widely 

implemented normalization method is called standardization. This method assures that the feature 

values have zero-mean and unit-variance, as such:  

 

𝑥𝑗,𝑡′ =
𝑥𝑗,𝑡 − 𝑥̅𝑗

𝜎𝑗
 (2.32) 

 

Scaling by removing the mean is particularly interesting for our purpose, as it forces features to never 

be always positive, allowing us to remove any bias in the model. 

 

Figure 6: Data normalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the figure shows non-normalized (left) and normalized (right) features. Shown are the stylized contours of the cost 

function ℒ(𝜔). By normalizing the features, the performance of the learning algorithm becomes less dependent on the 

weight initialization; enhancing learning. 
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2.10.1  Batch normalization 

Developed by Sergey and Szegedy (2015), batch normalization is a method to stabilize the distributions 

of hidden layer inputs. This is achieved by introducing an additional network layer that cross-sectionally 

standardizes the activations values over each batch. Then, the standardized values are scaled and 

shifted based on trainable parameters to maintain modelling flexibility. This standardization is applied 

before the non-linearity of the preceding layer. 

 

Santurkar et al. (2019) show that batch normalization causes a reparameterization of the underlying 

optimization. This has two main effects. Firstly, it increases the smoothness of the high dimensional 

non-convex error plane. This enhances the stability of gradient descent–based training algorithm as it 

becomes less prone to exploding or vanishing gradients. Secondly, it tends to make gradients more 

reliable and predictive. In particular, the computed gradient direction remains a fairly accurate 

estimate of the actual gradient direction, even after taking a larger step in that direction. Both effects 

make training significantly faster and less sensitive to the choice of hyper parameters. 8, 9 

  

                                                           
8 The findings are based on the improved Lipschitzness of the loss function and the gradient, respectively, after 

applying batch normalization. 
9 Santurkar et al. (2019) also show that the ‘covariate shift’ has no effect on performance by injecting noise in 

each layer after batch normalization. This invalidates Sergey and Szegedy’s (2015) original motivation for batch 

normalization. 
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Chapter 3 

Methodology 

3.1 Data 

We compare the performance and forecasting ability of three different types of networks with three 

different levels of depth, yielding nine different models. This is achieved using 5 financial assets 

𝐴1, … , 𝐴5, as shown in Appendix 3. After selecting a specific model, we train network weights and 

generate forecasts for each financial asset separately. This allows us to distinguish between the 

heterogeneous predictor relationships of the financial assets under consideration.  

 

Our dataset reaches from April 1, 2009 to June 27, 2019, encompassing 2,578 business days for each 

financial asset under consideration. We select 44 predictor variables 𝑥1,𝑖,𝑡, … , 𝑥44,𝑖,𝑡 to forecast the 

return of asset 𝐴𝑖  one day ahead, 𝑦𝑖,𝑡+1. In particular, the predictor set consist of macroeconomic data 

such as output growth, money supply and inflation, and market data such as yield curves, foreign 

exchange rates and momentum. As shown in Appendix 1, these predictor variables have shown 

significant forecasting abilities in prior research. However, it is worth noting that return predictability 

of a variable tends to decline substantially after the publication of the predictor (McLean and Pontiff, 

2016).  To partially address this issue, our main focus lies on recently detected predictor variables. In 

addition, it should be pointed out that macro-economic data releases are often subject to revision. As 

a result, unsophisticated use of the data can lead to serious look-ahead bias. To prevent this from 

happening, point in time estimates are collected were possible. When unable to distinguish between 

original and revised data, we follow Gu et al. (2019) and delay the weekly characteristics by one week, 

monthly characteristics by one month and quarterly characteristics by three months. Another issue is 

missing data points, which we replace with the monthly cross-sectional median for each financial asset. 

 

The implementation is done using Google’s Tensorflow library, which is a highly scalable and flexible 

machine learning framework (see Abadi et al., 2015). The current surge in training deep neural 

networks for financial applications is, at least partly, motivated by recent important contributions to 

this open source community. 
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3.2  Rolling window scheme 

We train the networks and generate the out-of-sample forecasts by implementing a rolling window 

scheme, as displayed in Fig. 7. The combination of the training and validation set is called the 

information set. The training set consist of the earliest 97 percent of the information set, while the 

validation set consist of the remaining 3 percent. For each time step, the information set consist of all 

the datapoints available up to that moment and the next data point is used as a test set. That is, we 

repeatedly try to predict one day ahead using a network shaped by all the information available to 

date. As a result, the information set increases by one data point after each time step. This procedure 

is repeated until we reach the end of the dataset. 

 

Figure 7: Rolling window scheme 

 

 

Taken into account the low signal-to-noise ratio of financial data, we need an adequate amount of 

training data to allow the network to capture signals. Therefore, the initial information set consists of 

2,518 datapoints, approximately 9 business years. The length of the information set increases the 

chance of exposure to both up- and downturns of the market, potentially improving  signal detection. 

Given the size of the original dataset, the rolling window scheme results in 60 partly-overlapping 

information sets and 60 non-overlapping test sets for each financial asset.  
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This particular rolling window scheme has been implemented for two reason. Firstly, the rolling 

window scheme allows us to periodically adapt the predictor weights. Taken in mind that the 

predicting power of signals change over time, this produces more robust forecasts. Secondly, it tends 

to replicate modelling behaviour of investors and portfolio managers alike.10 

 

3.2.1 Training 

The data that goes into the network are the standardized predictor variables 𝑥1,𝑖,𝑡 , … , 𝑥44,𝑖,𝑡 over the 

training set 𝒟, the optimal hyper parameters and the randomly initialized weights. Using these inputs, 

the network predicts future returns 𝑦̂𝑡+1,𝑖 over the training set, which are fed into the penalized loss 

function. The gradient of the loss function is then approximated through back propagation and the 

weights are adjusted according to the selected optimizer. After each weight adjustment, the network 

generates predictions on the held-out validation set. In accordance to the early stopping algorithm, 

training stops once the validation error starts to increase and the patience requirement is met. Once 

training stops, the fully trained network is used to generate an out-of-sample prediction 𝑦̂𝑡+1,𝑖 over 

the test set. Following the ensemble approach, these steps are repeated multiple times per timestep 

before averaging the results together into an ultimate forecast. Afterwards, the data point of the test 

set is added to the information set and the entire procedure repeated. 

 

3.2.2 Hyper parameters 

Before conducting the earlier discussed training procedure, we search for the optimal hyper parameter 

combination by means of cross-validation. The data that goes into the network are the predictor 

variables over the training set 𝒟, randomly initialized weights and an initial guess for the hyper 

parameter choice. The network weights are then adjusted recursively in accordance to the learning 

algorithm discussed earlier. After each weight adjustment, the network also generates predictions 

over the held-out validation set. Training stops as soon as the early stopping mechanism is triggered. 

The lowest level of validation error and the corresponding hyper parameters are then stored. Next, 

the procedure is repeated with a new set of  hyper parameters, drawn randomly from pre-defined 

marginal distributions (see Appendix 2). After evaluating a fixed amount of hyper parameter 

combinations (or, synonymously, “grid iterations”), we select the one that produces the lowest 

validation error.  

                                                           
10 One potential bias stems from the fact that the training set inflates as the as the rolling period grows. In turn, 

forecasts made further into the future may be of higher quality than those at earlier rolling periods. However, 

since this bias is present in all model forecasts, we expect it not to influence the quality of the model comparison. 
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We expect the optimal hyper parameters choice to be rather stable between two successive time 

steps. For this reason, the hyper parameter are optimized only once every 10 timesteps. This allows us 

to increase the amount of grid iterations, and therefore the accuracy of the optimal parameter choice, 

at no computational cost. 

 

3.3 Performance evaluation 

3.3.1 Forecasting accuracy 

As an informal measure to evaluate the predictive performance of networks for individual asset return 

forecasts, we calculate the mean absolute scaled error (MASE) as proposed by Hyndman and Koehler 

(2006). The MASE has advantageous properties compared to other measures, such as the root-mean-

square deviation, for calculating forecasting accuracy (see Franses, 2016). These include, among 

others, scale invariance, symmetry and interpretability. It is calculated as follows: 

 

𝑀𝐴𝑆𝐸 =

1
𝐽 ∙
∑ |𝑦𝑖,𝑡+1 − 𝑦̂𝑖,𝑡+1|
𝐽
𝑡=1

1
𝑇 − 1

∙ ∑ |𝑦𝑖,𝑡+1 − 𝑦𝑖,𝑡|
𝑇
𝑡=2

 (3.1) 

 

where the numerator is the forecast error over the out-of-sample period 𝐽, and the denominator is the 

mean absolute error of a naive random-walk without a drift over the information set 𝑇. That is, it 

measures the relative reduction in error compared to a naive one-step forecast method. When 

comparing forecasting methods, the method with the lowest MASE is the preferred model. 

 

3.3.2 Directional accuracy 

Predicting stock market returns accurately is incredibly challenging because of the high noise-to-signal 

ratio inherent financial data. It is generally presumed that predicting the sign is easier than predicting 

the actual return. Taken in mind that the direction of the market may already be sufficient to 

determine the investment position on an asset, we will pay close attention to the percentage of correct 

directional forecasts of each network. 
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3.3.3 Diebold-Mariano test 

To make a statistical pairwise comparisons of the generated network forecasts, we implement the 

Diebold and Mariano (1995) test for differences in out-of-sample forecasting accuracy between two 

methods. In order to test the null hypothesis that method (1) and (2) have the same accuracy,  Diebold-

Mariano use the following test statistic: 

 

𝐷𝑀 =
𝑑̅

√[𝑦0 + 2∑ 𝑦𝑘
ℎ−1
𝑘=1 ]

𝑛

 

(3.3) 

 

where 𝑑𝑡 = (𝑒𝑡
(1)
)
2
− (𝑒𝑡

(2)
)
2
 is called the loss-differential,  𝑒𝑡

(2)
 and 𝑒𝑡

(1)
 denote the prediction error 

of the return at time 𝑡 for two different ANNs over the testing set, ℎ is the forecast horizon and 𝑦𝑘  is 

the autcovariance at lag 𝑘, defined as: 11 

 

𝑦𝑘 =
1

𝑇
∑ (𝑑𝑡 −

𝑇

𝑡=𝑘+1

𝑑̅)(𝑑𝑡−𝑘 − 𝑑̅) (3.4) 

 

The Diebold-Mariano test statistic requires only that the loss differential be covariance stationary 

(Diebold and Mariano, 1995). For this reason, we examine the sample autocorrelations of the loss 

differentials and test for unit roots through the augmented Dickey-Fuller test.  

 

Harvey, Leybourne and Newbold (1997) find that the Diebold-Mariano test tends to reject the null 

hypothesis too often for small samples. They state that one can obtain improved properties for small 

sample testing by making a bias correction to the Diebold-Mariano test statistic, and comparing this 

corrected statistic with a student 𝑡-distribution, instead of the standard normal distribution. The bias 

corrected statistic is calculated as follows: 

 

𝐻𝐿𝑁 = √
𝑇 + 1 − 2ℎ + ℎ(ℎ − 1)

𝑇
𝐷𝑀 (3.5) 

 

                                                           
11 The loss-differentials could be serially correlated because of a variety of reasons. The most obvious one being 

sub-optimal forecasting. To prevent this from hampering the test statistic, the standard error in the DM statistic 

is calculated robustly.  
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Taken in mind the relative small size of our out-of-sample window, the adjusted Diebold-Mariano test 

statistic provides us with more reliable 𝑝-values for model comparison. 

 

3.3.4 Portfolio performance 

Given that forecasts of each network are asset-specific, the out-of-sample performance of a portfolio 

could provide us with an additional evaluation of the total network. The performance of portfolios 

tend to be of broader economic interest, as they constitute the vehicles most widely held by investors. 

In turn, allowing us to demonstrate economic significance. 

 

Following Baltas et al. (2013), we implement a portfolio selection method based on risk-budgetting. In 

specific, the portfolio weights are allocated in such a way that an asset’s contribution to overall 

portfolio risk, measured in volatility, is proportional to a certain asset-specific score, 𝑠𝑖. After equating 

this asset-specific score to the return forecast of a distinct network, 𝑦̂𝑡+1,𝑖, the objective can be defined 

as: 

𝑤𝑖,𝑡 ∙ 𝑀𝐶𝑅𝑖,𝑡 ∝ 𝑦̂𝑖,𝑡+1, ∀𝑖 (3.6) 

 

where 𝑀𝐶𝑅𝑖,𝑡 is the marginal contribution to risk of an asset, 𝛿𝜎𝑃 𝛿𝑤𝑡,𝑖⁄ . To allow for short selling, the 

sign of the asset-specific score must agree with 𝑤𝑡,𝑖. This assures that the position is entirely 

determined by the sign of the scores, as such: 

 

𝑤𝑖,𝑡 ∙ 𝑀𝐶𝑅𝑖,𝑡 ∝ |𝑦̂𝑖,𝑡+1|, ∀𝑖 (3.7) 

 

As shown in Appendix 5, this objective can be transformed into the following constrained optimization 

objective:  

 

                                               maximize:
𝒘𝑡

      ∑ |si,t| ∙ log(|𝑤𝑖,𝑡|)
𝑁
𝑖=1  

                                                subject to:      𝜎𝑝,𝑡 ≡ √𝒘𝑡
𝑻 ∙ 𝚺 𝑡 ∙ 𝒘𝑡 < 𝜎𝑇𝐺𝑇 

                                                                         𝑤𝑖,𝑡 > 0 𝑖𝑓 𝑠𝑖,𝑡 > 0 

                                                                         𝑤𝑖,𝑡 < 0 𝑖𝑓 𝑠𝑖,𝑡 < 0 

(3.8) 

 

were 𝜎𝑝,𝑡(𝒘) is the volatility of the portfolio, 𝜎𝑇𝐺𝑇 is the volatility target,  ∑   𝑡 is the rolling variance-

covariance matrix over the previous 255 business days and 𝒘𝑡 is a 𝐴 𝑥 1 vector of portfolio weights. 

The yearly target volatility is set to 10 per cent, corresponding to a monthly volatility of 2.88 per cent. 

This seems like a sensible volatility target for a medium-risk investor.   
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The weights are re-optimized on a daily basis until reaching the end of the out-of-sample set.  After 

each optimization procedure, the weight vector is rescaled by its sum, assuring the portfolio weights 

sum up to 1.  Delaying the implementation of this "fully-invested" constraint enhances computational 

efficiency without altering the final outcome in terms of the risk-parity objective (Baltas, 2013). 

 

3.3.4.1   Sharpe ratio 

The resulting portfolios are evaluated by looking at performance metrics at the end of the time horizon. 

As a traditional performance measure, we implement the Sharpe Ratio (𝑆𝑅) which is defined as 

follows: 

𝑆𝑅 =
𝔼(𝑅)

√𝜎2
 (3.9) 

 

where 𝑅 is the out-of-sample return of the portfolio and 𝜎2 is the out-of-sample variance of the 

returns. The ratio therefore measures the average out-of-sample portfolio return per unit of deviation.  

 

Taken in mind that the 𝑆𝑅 is based on mean-variance theory, it is only useful for normally distributed 

returns. In particular, the 𝑆𝑅 provides an inaccurate picture of risk when the return distribution is 

asymmetric and leptokurtic, with fatter and wider tails than the normal distribution. For this reason, 

we also examine the skewness and kurtosis of the out-of-sample return series. 

 

3.3.4.2   Jobson and Korkie test 

In order to evaluate the difference in Sharpe ratios statistically, we use the test statistic proposed by 

Jobson and Korkie (1981) after making the corrections suggested by Memmel (2003). Let 𝑆𝑅(1) and 

𝑆𝑅(2) be two Sharpe ratios generated by two portfolios based on network (1) and (2), respectively. To 

test whether the difference 𝑆𝑅(1) − 𝑆𝑅(2) is statistically significant, the adjusted Jobson-Korkie 

statistic is given by: 

𝑍𝐽𝐾 =
𝑆𝑅(1)  − 𝑆𝑅(2)

√ϑ
 (3.10) 
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which is asymptotically distributed as a standard normal when the sample size is large, with mean zero 

and variance 𝜗: 

 

ϑ =
1

𝑇
(2(1 − 𝜌1,2) +

1

2
((𝑆𝑅(1))

2
+ (𝑆𝑅(2))

2
− 2𝑆𝑅(1)𝑆𝑅(2)𝜌1,2

2 )) (3.11) 

 

where 𝜌1,2 is the correlation coefficient between the distinct portfolio returns and 𝑇 is the number of 

out-of-sample returns.  Clearly, the test assumes joint normality of the underlying process of portfolio 

returns.  Only in that case we can express the difference in SR as a function of the first and the second 

empirical moments of the two portfolio return series.  

 

3.3.4.3   Maximum drawdown 

The maximum drawdown is an indicator of downside risk, calculated as the maximum decline from a 

historical peak over a certain time period. It is calculated as follows: 

 

𝑀𝑀𝐷(𝑇) = max
𝒯∈(0,𝑇)

[ max
𝑡∈(0,𝒯)

 𝑋(𝑡) − 𝑋(𝒯)] (3.12) 

 

where 𝑇 is the out-of-sample time period and 𝑋(∙) is the cumulative return over a time period. The 

smaller the MMD, the better. Clearly, the power of MMD as a risk measure stems from the fact that it 

is independent of the empirical distribution at hand. 

 

3.3.4.4   Benchmark 

The performance metrics of portfolios corresponding to distinct networks are compared to an equally 

weighted portfolio. This equally weighted portfolio serves as a naive benchmark, because of its easy 

implementation, widespread use and out-of-sample performance.12  

 

  

                                                           
12 Equally weighted portfolios tend to out-perform mean-variance optimized portfolios in certain out-of-sample 

cases (e.g. DeMiguel, Garlappi and Uppal, 2009). 
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Chapter 4 

Results 

 

4.1   Forecasting accuracy 

Table 1 shows the mean absolute scaled errors of the forecasts for each financial asset. We compare 

nine different networks in total, including the FNN, LSTM and GRU with various levels of depth.  When 

comparing forecasting methods, the method with the lowest MASE is the preferred model. In fact, 

scores larger than one indicate that in-sample one-step predictions from the naive method perform 

better than the forecast values under consideration.  

 

 

 

 

 

 

Table 1: MASE scores of daily out-of-sample returns 

Model BND VNQ VOE VOT VTI 

1L FNN 5.30 1.45 1.78 1.93 1.78 

2L FNN 6.54 1.31 1.45 1.58 1.69 

3L FNN 6.34 1.17 0.96 1.17 1.37 

1L LTSM 0.76 0.55 0.63 0.57 0.77 

2L LTSM 0.71 0.53 0.58 0.58 0.69 

3L LTSM 0.70 0.47 0.55 0.57 0.56 

1L GRU 0.71 0.53 0.58 0.65 0.58 

2L GRU 0.65 0.49 0.55 0.57 0.56 

3L GRU 0.66 0.48 0.56 0.57 0.57 

 

Note: This table shows the mean absolute scaled errors of forecasts generated using nine different networks, 

including the FNN, LSTM and GRU with various levels of depth, for each financial asset. The financial assets 

include the vanguard total bond market (‘BND’), total stock market (‘VTI’), real estate (‘VNQ’), mid-cap value 

(‘VOE’), and mid-cap growth (‘VOT’) exchange traded funds. Lower MASE scores indicate stronger predictive 

accuracy. Scores higher than one indicate that the out-of-sample forecasts of the network under performs the 

one-step naive benchmark over the in-sample period.  



34 
 

Firstly, it can be observed that RNNs tend to outperform FNNs by a large margin in terms of mean 

absolute scaled errors. The plurality of FNNs have MASE scores larger than one, indicating that their 

performance is below par. In contrast, both the GRU and LSTM tend to outperform the naive 

benchmark by a large margin, with MASE scores ranging from 0.47 to 0.77. This provides us with 

preliminary evidence that implementing temporal connections between hidden layers improves the 

networks forecasting abilities. 

 

Furthermore, it can be noted that a clear distinction between LSTM and GRU is absent. In particular, 

for each level of depth, the differences in MASE scores between the two units is neglectable and 

inconsistent. This provides preliminary evidence that both units show similar performance in financial 

return forecasting applications.  

 

Secondly, it can be observed that the benefits of “deep" learning are present, but limited. Most of the 

RNNs and FNNs with two and three layers have lower MASE scores compared to its one-layered 

counterparts. This indicates that, by introducing additional hidden layers to our model, we can detect 

an improvement of performance. In turn, validating the hypothesis that financial time-series exhibit 

highly non-linear dependencies and require deep network architectures.  

 

However, it is worth noting that the observed benefits of “deep” learning are substantially higher for 

FNNs compared to RNNs. This dichotomy has two possible explanations. One potential explanation 

stems from the fact that the incremental  degrees of freedom for each additional hidden layers is larger 

for RNNs compared to FNNs. As mentioned earlier, this has three effects. It makes RNNs extra prone 

to both overfitting and vanishing gradients, and its loss function extra non-convex. Overall, this causes 

the cost of an extra layer to be substantially higher for  RNNs compared to FNNs. Another potential 

explanation stems from the fact that the benefits of capturing abstract and non-linear temporal 

dependencies are limited. 

 

Lastly, it can be observed that the forecasting accuracy of each network is not identical across financial 

assets. Clearly, the financial assets with real estate, value, growth and total market exposure (being 

‘VNQ’, ‘VOE’, ‘VOT’ and ‘VTI’, respectively) have similar MASE scores for each network under 

consideration. This provides reassurance that the predictor set has similar forecasting power across 

these financial assets. However, the MASU scores of ‘BND’ seem to be strongly incompatible with other 

assets, particularly for feed-forward networks. This could indicate that the predictor set of bond 

market returns does not fully align with that of other assets. Notably, after including temporal 

relationships, the disparity disappears to a certain extent. 
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4.2  Directional accuracy 

Table 2 displays the percentage of correct direction of change forecasts for all considered models. This 

includes the FNN, LSTM and GRU model where a sign function is wrapped around the output of the 

network. The scores of the binomial test are shown with (*), (**) and (***) for 10, 5 and 1 per cent 

significance, respectively. It is worth noting that, as we test multiple hypothesis at the same time, the 

chance of observing flukes and, therefore, the likelihood of incorrectly rejecting the null hypothesis 

(or, synonymously, “Type I errors”) increases. To counteract this, we implement the conservative 

Bonferroni correction and divide the significance levels by the number of comparisons. Bold fonts 

indicate the highest percentage of correct directional forecasts for each network. 

 

Table 2: Directional prediction, percentage correct 

Model BND VNQ VOE VOT VTI Total 

1L FNN 44.6 % 55.0 % 56.7 % 40.7 % 48.3 % 49.2 % 

2L FNN 48.2 % 46.7 % 43.3 % 49.2 % 56.7 % 48.8 % 

3L FNN 51.8 % 43.3 % 46.7 % 42.4 % 53.3 % 47.5 % 

1L LSTM 50.0 % 50.0 % 56.7 %  64.4 %  48.3 % 53.9 % 

2L LSTM 41.1 % 50.0 % 58.3 % 61.0 % 60.0 % 54.2 % 

3L LSTM 42.9 % 51.7 % 58.3 % 59.3 % 58.3 % 54.2 % 

1L GRU 42.9 %  36.7 % 56.7 % 47.5 % 53.3 % 47.5 % 

2L GRU 42.9 % 53.3 % 55.0 % 57.6 % 60.0 % 53.6 % 

3L GRU 44.6 %   58.3 % 56.7 % 59.3 % 58.3 % 55.5 % 

Total    40.7 % * 49.3 % 54.3 %  53.5 %    55.2 % *   

 

Note: This table shows the percentage of correct directional forecasts  for each financial asset generated using 

nine different networks, including the FNN, LSTM and GRU with various levels of depth. The financial assets 

include the vanguard total bond market (‘BND’), total stock market (‘VTI’), real estate (‘VNQ’), mid-cap value 

(‘VOE’), and mid-cap growth (‘VOT’) exchange traded funds.  (*), (**) and (***) indicate significance at 10%, 5% 

and 1% level, respectively, for two-tailed binomial tests with 𝐻0: 𝑝 = 0.5. The significance levels are corrected for 

5-way comparison for the marginal column totals and 9-way comparison for all other elements of the table.  

 

Firstly, it should be noted that most networks perform better than what one would expect in a purely 

random setting. In particular, 27 out of the 45 networks predict the correct sign with a probability of 

50 per cent or higher. This result is mainly driven by the strong performance of recurrent neural 

networks. In fact, out of all considered recurrent neural networks, 22 out of 30 predict the correct sign 

with a probability of 50 per cent or higher. This again provides us with suggestive evidence that RNNs 

tend to perform better than FNNs in return forecasting applications. However, taken in mind that the 
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majority of these sign predictions yield no statistical significance after making a Bonferroni correction, 

we lack assurance that these results are driven by model performance instead of pure randomness.  

 

Secondly, the marginal row totals demonstrate the percentage of total correctly classified signs for 

each network. It can be observed that the LSTM units outperform the FNN networks in terms direction 

of change forecasting irrespective of network depth, with marginal row totals ranging from 53.9 to 

54.2 per cent. With the exception of one-layered networks, FNNs also tend to fall behind the 

performance of GRU units. Strikingly, the performance of the one-layered GRU is much worse, with a 

marginal row total of 47.5 per cent.  This deviation comes unanticipated, taken in mind that the MASE 

scores of GRU and LSTM are similar.  

 

In addition, the marginal row totals demonstrate the overall effects of depth on each distinct network. 

In line with the results of the previous section, the forecasting performance is weakly related to depth 

for the LSTM units, with marginal row totals increasing from 53.9 to 54.2 per cent. Likewise, GRU units 

seem to better predict future signs after adding additional hidden layers, with percentages steadily 

increasing from 47.5 to 55.5 per cent. Surprisingly, the benefits of depth for FNNs as observed in the 

previous section seem to have disappeared entirely. In fact, the marginal row totals of FNNs actually 

decrease with depth, from 49.2 to 47.5 per cent. This indicates that, as depth increases, the mean 

absolute error for each sign that is still being correctly classified decreases.  

 

Moreover, the marginal column totals demonstrate the percentage of total correctly classified signs 

for each asset. In can be observed that the sign predictions of the assets with equity exposure, being 

‘VOE’, ‘VOT’ and ‘VTI’, are quite accurate, with column totals ranging from 54.3% to 55.2%. In fact, the 

predictions of ‘VTI’ yield statistical significance at 10 per cent level, after making a conservative 

Bonferroni adjustment for 5-way comparison. Depending on the predictor variables used to exploit 

inefficiencies, this suggests that the weak and/or semi-strong form of the efficient market hypothesis 

does not hold. 

 

Lastly, a strong imbalance can be observed between the financial asset with bond exposure (being 

‘BND’), with a column total of 40.7 per cent, and other assets.  This substantiates the earlier point that 

the predictor set does a poor job explaining bond market performance.  

  



37 
 

4.3   Diebold-Mariano test 

Table 3 to 7 demonstrate a comparison of out-of-sample forecasting performance for each distinct 

financial asset and method using the adjusted Diebold-Mariano test. The asterisks (*), (**), and (**) 

indicate that the difference in prediction errors is significant at 10, 5 and 1 percent level after applying 

the conservative Bonferroni correction for 8-way comparison. Bold fonts indicate the difference is 

significant at 5 per cent or higher using standard calculated probabilities. Our sign convention is that a 

positive DM test statistic indicates the column model outperforms the row model. 

 

Table 3: Comparison of daily out-of-sample forecast of ‘BND’ using adjusted Diebold-Mariano test 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 -1.97 - 0.91 3.63 *** 3.69 *** 3.68 *** 3.69 *** 3.70 *** 3.70 *** 
FNN2  - 0.12 5.57 *** 5.65 * 5.62 *** 5.62 *** 5.67 *** 5.67 *** 
FNN3   2.72 * 2.72 * 2.71 * 2.73 * 2.73 * 2.73 * 
LSTM1    1.30 0.46  0.87 2.53 3.08 ** 
LSTM2     0.71 0.57  2.37  2.36  
LSTM3      0.23 1.22 1.28 
GRU1       1.45 1.78 
GRU2        1.33 

--------- 

----Table 4: Comparison of daily out-of-sample forecast of ‘VNQ’ using adjusted Diebold-Mariano test 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 0.86 0.71  4.16 *** 4.18 *** 4.01 ***   3.88 *** 3.98 *** 4.06 *** 
FNN2  0.42 3.99 *** 4.06 *** 4.02 ***   4.05 *** 4.06 *** 4.03 *** 
FNN3   2.34 2.41 2.52   2.55  2.54  2.52  
LSTM1    0.07 1.05   0.23 0.95 1.34 
LSTM2     1.27   0.43 1.66 1.83  
LSTM3      - 1.18 0.05 1.07 
GRU1       1.54 1.52 
GRU2        1.36 

------------------------------1 

Table 5: Comparison of daily out-of-sample forecast of ‘VOE’ using adjusted Diebold-Mariano test 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 1.39 2.53 2.92 ** 3.06 ** 3.07 **   3.10 **   3.03 **   3.01 ** 
FNN2  1.45 2.97 ** 3.63 *** 3.62 ***   3.58 ***   3.61 ***   3.61*** 
FNN3   2.46 8.90 *** 11.1 ***   1.26   2.87 *   2.90 * 
LSTM1    1.44 1.76   1.26   1.32   1.46 
LSTM2     1.83 - 0.02 - 0.24   0.04 
LSTM3      - 0.46 - 0.89 - 0.69 
GRU1       - 0.06   0.03 
GRU2          0.27 

---------- 
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Table 6: Comparison of daily out-of-sample forecast of ‘VOT’ using adjusted Diebold-Mariano test 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 4.28 *** 2.73 * 6.48 *** 6.83 *** 6.92 ***   6.74 ***   6.81 ***   6.79 *** 
FNN2  1.71 18.5 *** 16.8 *** 16.7 ***   15.3 ***   15.3 ***   15.4 *** 
FNN3   2.54 2.43 2.42   2.26   2.48   2.49 
LSTM1    0.61 0.78 - 0.44   0.87   0.99 
LSTM2     1.50 - 4.45 ***   0.43   0.86 
LSTM3      - 4.60 *** - 0.49 - 0.26 
GRU1         2.72 *   3.99 *** 
GRU2          1.25 

--------------- 

Table 7: Comparison of daily out-of-sample forecast of ‘VTI’ using adjusted Diebold-Mariano test 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 0.93 1.51  3.52 *** 3.98 *** 4.03 *** 4.21 *** 4.24 ***   4.26 *** 
FNN2  1.22 3.72 *** 4.37 *** 4.40 *** 4.39 *** 4.65 ***   4.60 *** 
FNN3   4.22 *** 2.29 2.25  3.49 *** 3.50 ***   3.43 *** 
LSTM1    0.12 0.13 1.96 1.99   1.88  
LSTM2     0.38 1.21 1.51   1.49 
LSTM3      1.14 1.41   1.40 
GRU1       0.68   0.67 
GRU2        - 0.29 
 

Note: Table 3 to 7 report the adjusted Diebold-Mariano test statistics for pairwise comparisons of a row model versus a 

column model for each financial asset. The financial assets include the vanguard total bond market (‘BND’), total stock 

market (‘VTI’), real estate (‘VNQ’), mid-cap value (‘VOE’), and mid-cap growth (‘VOT’) exchange traded funds.  A positive 

sign of the DM statistic indicates that the column model outperforms the row model. (*), (**) and (***) indicate 

significance at 10%, 5% and 1% level, respectively, for individual tests after applying the conservative Bonferroni 

adjustment for 8-way comparisons. Bold font indicates the difference is significant at 5% level or better using standard 

calculated probabilities. 

 

--------------- 

Firstly, it can be observed in Tables 3 to 7 that recurrent neural networks tend to outperform FNNs. 

The signs of the loss differentials indicate that the squared prediction errors of FFNs are higher than 

those of the recurrent networks, irrespective of network depth. The bold fonts indicate that, before 

applying the Bonferroni correction, the plurality of these differences are at least statistical significant 

at 5 per cent level.  This aligns with the strong difference in MASU scores and direction of change 

forecasts between FNNs and RNNs as observed in Section 4.1 and 4.2.  

 

The main effect of applying the Bonferroni correction is that RNNs lose their significance over the 

three-layered FNNs for various instances. This could indicate that RNNs perform better than FNNs in 

most cases because of their initial higher levels of complexity, instead of their ability to capture 
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relationships unattainable by FNNs.13  In that case, ceterus paribus, as the depth and complexity of the 

feed-forward network increases, the forecast errors becomes statistically indifferent from RNNs. This 

is exactly what we observe in Table 4 and 6.   

 

However, we expect the performance of RNNs to be, at least partly, driven by their ability to capture 

inter temporal relationships. There are two reasons for this line of thought.  Firstly, for each network 

and time step, the width of the first hidden layer is fully optimized through a computationally 

demanding search algorithm. In this way, the network selection procedure assures an adequate 

amount of network complexity. Secondly, it is unlikely that our predictor set is flawless and consists of 

all the correct lagged predictor variables. 

 

Thus, another explanation for the disparity could stem from the fact that the benefits of incorporating 

internal feedback loops in the network are asset-specific. This makes intuitive sense, as the investor 

base of each financial asset is heterogeneous and, therefore, respond to temporal information 

differently. This highlights the importance to generate forecasts for each financial asset separately. 

 

Moreover, the Bonferroni correction could simply be too conservative, as observed by Moran (2003). 

If this holds for our analysis, we find strong statistical evidence that recurrent networks outperform 

the plain vanilla feed-forward networks, irrespective of depth.  

 

Secondly, the tables demonstrate inconsistent evidence regarding the performance of LSTM units 

compared to GRU units.  The sign of the DM test statistic in Table 3, 4 and 7 indicate that GRU units 

tend to outperform LSTM units, irrespective of network depth. In contrast, Table 5 and 6 demonstrate 

evidence in favour of the exact opposite. Overall, the inconsistency and the absence of statistical 

significance unables us generalize Chung et al.’s (2014) findings that GRU unit performs better than 

LSTM units in the application to the financial realm.  

 

One potential explanation for this inconsistency stems from the differences in architecture between 

GRU and LSTM units.  In particular, the way in which each type of gated network exposes its memory. 

While GRUs expose their entire memory at each time step, LSTM units apply an output gate before 

exposing only part of their memory. No theoretical explanation is available that explains why this 

                                                           
13 Note that LSTM and GRU units have four and three times the weight parameters of a FNN given the same 
number of units, respectively. 
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benefits one asset over another. We therefore fail to conclude that the benefits of particular recurrent 

network types are asset-specific. 

 

Thirdly, the tables demonstrate whether the benefits of “depth” are statistically significant for each 

network under consideration.   The DM statistics observed between LSTM units in Table 3 to 7 indicate 

that the effects of “deep” learning are positive. However, the loss differentials yield no statistical 

significance. This is non-surprising given the neglectable benefits of depth for LSTM units observed in 

Section 4.1 and 4.2. Similarly, the positive loss differentials for FNNs and GRUs in Table 4 to 7 indicate 

that additional hidden layers allow the network to better capture future returns. Nevertheless, with 

the exception of Table 6, the difference in prediction errors are not statistically significant. Again, the 

inconsistency and the absence of statistical significance unables us to conclude that deeper networks 

generally outperform shallow networks in financial return forecasting applications.  

 

Finally, as demonstrated in Appendix 6, the plurality of Augmented Dicky Fuller tests demonstrate 

significance at 5 and 1 per cent. This allows us to reject the presence of unit roots and provides 

evidence in favour of covariance stationarity. Some tests, however, demonstrate significance at levels 

over, but close to, the 10 per cent boundary. In other words, it can be observed that a couple of loss 

differentials are not precisely stationary, just as surely no financial time series is likely precisely 

stationary. However, all results can be regarded as a close approximation to the DM assumption, 

making the test statistics reliable. 

 

4.4   Portfolio performance 

Table 8 demonstrates the out-of-sample performance of ten different portfolios, including the EWM 

and the network-specific portfolios. As described in Section 3.3.4, the portfolios are constructed based 

on the acquired forecasts of each network.  To prevent the noise inherent bond return forecasts from 

injecting randomness into the performance statistics, we only consider portfolio generated using the 

equity and real estate assets.14 The transaction costs are not taken into account. 

 

Firstly, it can be observed from Table 8 that the distributions of the out-of-sample portfolio return 

series are far from normal. The portfolio returns are highly skewed with fatter and wider tails than the 

normal distribution. This makes the Sharpe ratio an unreliable performance metric and, 

                                                           
14 The noise inherent the bond forecasts, as observed in Section 4.1 and 4.2, causes very unstable performance 
metrics w.r.t risk preferences. This can be observed in Appendix 7. As a result, making us unable to draw any 
conclusions regarding the overall performance of each network.  For this reason, we decided to only focus on 
portfolios generated using ‘VTI’, ‘VOT’, ‘VNQ’ and ‘VOE’.  
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simultaneously, invalidates the assumption of bivariate normality underlying the JB statistic. For this 

reason, we shall focus on the cumulative returns (𝐶𝑅), the maximum draw down (𝑀𝑀𝐷) and the ratio 

of the two. 

Table 8: Portfolio performance with 𝜎𝑇𝐺𝑇 = 10% 

Portfolio 𝐶𝑅 𝑆𝑅 𝑍𝐽𝐵  Skewness Kurtosis 𝑀𝑀𝐷 𝐶𝑅 𝑀𝑀𝐷⁄  

1LSTM -0.11 - 0.04 - 0.53 1.8 20.0 0.38 -0.3 

2LSTM 0.44 0.10 0.35 7.3 52.3 0.12 3.7 

3LSTM 0.11 0.13 0.69 1.8 10.1 0.07 1.6 

1GRU -0.23 - 0.17 - 1.61 -5.1 29.5 0.29 -0.8 

2GRU 0.12 0.12 0.59 3.8 22.7 0.06 2.0 

3GRU 0.10 0.11 0.63 1.8 9.8 0.07 1.4 

1FNN 0.11 0.04 - 0.05 5.7 39.3 0.16 0.7 

2FNN 1.20 0.15 0.62 6.6 44.5 0.15 8.0 

3FNN -0.23 - 0.11 - 0.89 -5.7 38.3 0.32 -0.7 

EWM 0.02 0.05 n/a -0.4 -0.02 0.04 0.5 

 

Note: this table demonstrate the out-of-sample performance metrics for each network-based portfolio. 

Demonstrated are the cumulative out-of-sample return in percentages, the Sharpe ratio, the Jobson and 

Korkie test between the EWM and each distinct network-based portfolio, higher moments as well as the 

maximum draw down in terms of CRs.  (*), (**) and (***) indicate significance at 10%, 5% and 1% level, 

respectively, for individual tests after making a conservative Bonferroni correction for 10-way comparison. 

Bold fonts indicate that the portfolio metric outperforms the EWM benchmark. 

 

Secondly, it is worth noting that the plurality of network-based portfolios produce positive 

performance metrics. Both the two- and three layered RNN portfolios produce CRs ranging between 

0.10 and 0.44 per cent, respectively. Likewise, the one- and two-layered FNN portfolio generate CRs of 

0.10 and 1.20 per cent, respectively. These CRs tend to be substantially higher than that of the equally 

weighted benchmark. Even after adjusting the CRs for maximum draw down, it can be observed that 

the majority of portfolios strongly outperform the naive benchmark. This demonstrates the economic 

significance of network-based portfolios.  

 

Yet, the disparity between portfolio metrics and the earlier analyzed performance measures raise 

questions. To start, it comes as a surprise that the two-layered FNN portfolio outperforms all other 

portfolios, with a risk adjusted cumulative return of 8.0. The RNNs generally performed much better 

compared to their feed forward counterparts based on MASE, directional accuracy and DM statistics. 

In terms of portfolio metrics, however, this seems not to hold true.  Likewise, the dependency of 

portfolio performance on depth also comes as a surprise, taken in mind neglectable effects observed 

in earlier sections – particularly for RNNs.  
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 Overall, the inconsistency of the portfolio performance metrics unable us to conclude that one 

network-based portfolio generally outperforms the other. The discrepancy between the portfolio 

metrics and the MASU, direction of change and DM statistics could indicate that the portfolio approach 

captures information unattainable by traditional metrics.  Another potential reason for the disparity 

stems from the fact that the portfolio metrics are very sensitive to risk preferences.  Lastly, the results 

could be a twist of fate stemming from a small data sample. The final hypothesis cannot easily tested 

without enlarging our dataset. 

 

4.4.1   Portfolio robustness 

To determine whether the portfolio metrics portray an inaccurate image of performance due to its 

sensitivity to risk preferences, we conduct a robustness check.  In particular, we calculate out-of-

sample MMDs for hundred portfolios with risk preferences (i.e. volatility targets) uniformly distributed 

between 8 and 12 per cent.   The results are demonstrated in Fig. 8. 

 

It can be observed the risk measure is rather stable for feed-forward neural networks and, with the 

exception of an outlier, also for the plurality of RNNs. In turn, invalidating the notion that the 

performance metrics are driven by differences in risk preferences.  
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Figure 8: Portfolio robustness with respect to risk preferences 
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Note: this figure demonstrates the out-of-sample MMDs of all the considered network-based portfolios based on 

hunderd different risk preferences, uniformly distributed between 8 and 12 percent. The horizontal orange line 

indicates the MMD corresponding to 𝜎𝑇𝐺𝑇 = 10%, as portrayed in Table 8.  
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Chapter 5 

Conclusion and limitations 

 

5.1  Conclusions 

This research aims to answer three propositions: 
 

1. Given a particular feature setup, are certain neural network types better equipped to predict 

future returns than others? 

2. How does the depth of the various neural networks affect its predictive power? 

3. Is it possible to build a successful trading strategy based on the predictions of the network?  

 

 

5.1.1 Given a particular feature setup, are certain neural network types better 

equipped to predict future returns than others? 

 

From our results it is clear that recurrent neural networks perform better than the vanilla feed-forward 

network in the application of financial return forecasting. Both the MASU scores and direction of 

change forecasts are substantially higher for the LSTM and GRU units compared to FNNs. In addition, 

the positive DM statistics demonstrates that the squared error of RNNs is substantially lower than 

those of FNNs. For many financial assets, the DM statistics yielded statistical significance after a 

conservative Bonferonni adjustment. For some financial assets, however, we found no significance 

difference between the three-layered FNN and RNNs.  As the exception proves the rule, we therefore 

state that the benefits of internal feedback loops are asset-specific.  

 

We fail to provide evidence that the performance of RNNs is driven by their ability to capture inter 

temporal relationships, instead of their higher inherent levels of complexity. Nevertheless, we argue 

that the network selection procedure largely assures that the FNN is adequately complex. 

Furthermore, we indicate that it is highly unlikely that all lagged relationships are captured solely using 

our predictor set.  For the above reasons, we conclude that the excess in performance of recurrent 

neural networks is, at least partly, driven by their ability to capture inter temporal relationships.  
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Combining the two findings, we conclude that the benefits of capturing inter temporal relationships 

with recurrent neural networks are asset-specific. This makes intuitive sense, as the investor base of 

each asset is heterogeneous.  

 

Lastly, our results demonstrate no noteworthy difference in performance between the GRU and LSTM 

units. In terms of both the MASU scores and direction of change forecasts, the two types of RNNs 

performed similar.  While some DM statistics between the GRU and LSTM units were statistically 

significant, the results remained inconsistent. A clear explanation as to why the GRU or LSTM 

architecture should perform better for certain assets over others remains to be found. Until then, we 

simply fail to conclude that one is better than the other in the application of return forecasting.   

 

 

5.1.2 How does the depth of the various neural networks affect its ability to 

forecast future returns? 

 

Our result suggests that the benefits of depth on each network are absent. The effect of depth on 

MASU scores and direction of change forecasts were positive, but neglectable for LSTM and GRU units. 

In contrast, deeper FNNs performed substantially better in terms of MASU, but weaker in terms of 

direction of change. For each network, the significance levels of the DM statistics were inconsistent 

and mostly absent. Thus, in contrast to Abe and Nakayama (2018), we fail to find statistical evidence 

that deeper networks generally perform better than shallow networks in forecasting financial returns. 

The disparity could stem from the fact that our research optimizes the width of each network through 

a search algorithm, while Abe and Nakayama (2018) use pre-defined architectures. The latter could 

undermine the levels of complexity a network can achieve in a shallow state. Overall, our findings 

invalidate the hypothesis that financial time-series exhibit highly abstract and non-linear dependencies 

and require deep network architectures.  
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5.1.3 Is it possible to build a successful trading strategy based on the predictions 

of the network?  

 

Our results find evidence against the efficient market hypothesis. After aggregating the sign 

predictions of all considered networks, it has been shown that the correct sign of ‘VTI’ and ‘VOT’ was 

forecasted with reasonable accuracy. In fact, the direction of change forecasts of ‘VTI’ yielded 

statistical significance. It is unclear what predictors allow for this forecastability, hence, we are only 

able to conclude that we find evidence against the weak and/or semi-strong form of market efficiency. 

 

To exploit these inefficiencies, we translated the forecasts in a long-short risk parity portfolio. We 

observed that deeper RNN portfolios outperform the naive benchmark by a large margin. Surprisingly, 

shallow FNNs portfolios also produced maximum draw down adjusted cumulative returns higher than 

the equally weighted benchmark. In fact, the two-layered FNN portfolio outperform all others 

portfolios. The latter came as a surprise taken in mind that the traditional performance metrics, such 

as MASE, direction of change and DM statistics, were significantly worse for FNNs compared to RNNs. 

We tested and invalidated the hypothesis that this inconsistency stems from sensitivity to risk-

preference. For this reason, other research is still required to thoroughly understand the discrepancy 

and analyse the full potential of portfolio approaches to evaluate network performance.  
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5.2  Limitations 

In this section we will elaborate on some limitations of our research and present potential 

improvements which could provide a basis for future research.  

 

5.2.1 Hyper parameter optimization 

One limitation arises due to the fact that the design and the training procedure of each network 

requires making presumably arbitrary choices regarding the learning rate, penalty terms, number of 

nodes and layers, training and validation set, and so forth. These choices are critical for the 

performance of the network, yet no infallible method exists to determine them. By implementing a 

computationally demanding search algorithm, we attempt to optimize the networks parameters. 

Given the immense search space, however, it is highly unlikely that we fully achieved this goal. To 

further optimize the network selection procedure, different kinds of hyper parameter search 

algorithms, such as gradient-based, Bayesian or evolutionary optimization, could have been 

implemented.  

 

5.2.2 Training algorithm 

Another limitation stems from the fact that training a network has a large solution space in a highly 

non-convex error plane. This brings forward the possibility that the results are simply numerical. Even 

though we aim to curtail this effect and provide stability of our results by training each network with 

different random seeds, this is a process that can always be refined further to acquire even more 

accurate results. For example, different optimization techniques besides back propagation, such as K-

means or genetic algorithms could have been implemented. Qiu, Song and Akagi (2016), for instance, 

find that different optimization techniques tend to bring about different levels of accuracy in the 

domain of financial return forecasting.  

 

5.2.3 Convolutional network 

Furthermore, only a limited number of networks and architectures have been considered. There are 

plenty of other networks and network architectures that are worth investigating. One particularly 

interesting candidate is the convolutional neural network. Convolutional networks work through 

specialized kind of linear operations which measures dependencies between neighbouring inputs.  

Clearly, this network could be readily applied to financial time series, as neighbouring points have clear 

time dependencies.   
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5.2.4 Predictor set 

Lastly, the strength of neural networks stems from the data that is being fed into the system. This 

paper only uses a small subset of the predictor variables mentioned in the literature. For instance, 

Harvey et al. (2016) count 316 predictive signals for describing stock return behaviour. It is therefore 

worth investigating whether the results presented in our research holds with different predictor sets. 
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Appendix 

                  A.1:  Predictor set 

 

ID Name Measurement Reference Freq Source 

1 Beta Beta of one-factor model of excess 
market return on excess stock 
return over 52 weeks.15 

Fama and 
MacBeth (1973) 

D -- 

2 Beta squared Squared beta of one-factor model 
of excess market return on excess 
stock return over 52 weeks. 

Fama and 
MacBeth (1973) 

D -- 

3 Business confidence (м) Business confidence index (BCI). Sum (2014) M OECD 

4 Consumer confidence (м) Consumer confidence index (CCI). Fisher and 
Statman (2003) 

M OECD 

5 Default spread Spread between Moody’s average 
BAA-rated seasoned corporate 
bond yield and 10-year treasury 
bond yield. 

Chen, Ross and 
Roll (1986) 

D Moody’s; 
FRED 

6 Dollar trading volume The log of daily trading volume 
expressed in adjusted closed 
market price. 

Chordia et al. 
(2001) 

D -- 

7- 
11 

Exchange rate Daily percentage change of 
exchange rates between USD and, 
RMB, CAD, MXN, JPY and EUR. 

Zarei et al. (2019) D FRED 

12 FED fund rate Effective overnight federal reserve 
fund rate. 

Flannery and 
Protopapadakis 
(2002) 

D FRED 

13-
18 

GDP growth (ϙ) Growth rate of seasonally adjusted 
real gross domestic product of 
USA, CHN, CAN, MEX, JPN and GER. 

Flannery and 
Protopapadakis 
(2002) 

Q OECD 

19 Gold price Natural logarithm of the daily gold 
price. 

Buyuksalvarci 
(2010) 

D FRED 

20 Gold price change Daily percentage change of gold 
price. 

Buyuksalvarci 
(2010) 

D -- 

21 Housing starts (м) Approximation of housing units 
being (re)built deflated by prior 
quarter total of US housing units. 

Flannery and 
Protopapadakis 
(2002) 

M FRED; 
Census 

22 Industrial production (м) Industrial production index (IPI). Humpe and 
Macmillan (2009) 

M FRED 

                                                           
15 The Wilshire 5000 Total Market Full Cap Index and 10-Year treasury bond yield are usesd as a proxy for the market 
portfolio and risk-free rate, respectively.  
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           A.1:  Predictor set     (continued) 
 

ID Name Measurement Reference Freq Source 

23 Inflation, consumer (м) Monthly percentage change of 
consumer price index (CPI) 

Chen, Ross and 
Roll (1986) 

M OECD 

24 Inflation, producer (м) Monthly percentage change of 
producer price index (PPI) 

Flannery and 
Protopapadakis 
(2002) 

M OECD 

25 Junk bond premium Spread between Moody’s average 
BAA-rated and AAA-rated seasoned 
corporate bond yield. 

Flannery and 
Protopapadakis 
(2002) 

D Moody’s 

26 Momentum 3-month Cumulative return over 3 months 
ending t-1. 

Jegadeesh and 
Titman (1993);  
Gu et al. (2018) 

D -- 

27 Momentum 6-month Cumulative return over 6 months 
ending t-1. 

Jegadeesh and 
Titman (1993);  
Gu et al. (2018) 

D -- 

28 Momentum 12-month Cumulative returen over 12 
months ending t-1. 

Jegadeesh (1990); 
Gu et al. (2018) 

D -- 

29 Momentum change  Daily percentage change in 6-
month momentum measure. 

Gu et al. (2018) D -- 

30 Money supply (ѡ) The  log of the M2 money supply 
level. 

Chancharat et al. 
(2007) 

W FRED 

31 Oil price The log of the daily brent oil price. Fedorova and 
Pankratov (2010) 

D -- 

32 Oil price change Daily percentage change of brent 
oil price. 

Fedorova and 
Pankratov (2010) 

D FRED 

33 Reversal short-term Cumulative return over 1 month 
ending t-1. 

Jegadeesh (1990) D -- 

34 Reversal long-term  Cumulative return over 12 months 
ending t-6. 

Novy-Marx (2012) D -- 

35 Trade balance (м) Trade balance of goods and 
services deflated by prior quarter 
GDP (measured in current dollars). 

Flannery and 
Protopapadakis 
(2002) 

M FRED; 
OECD 

36 Treasury bill yield Yield to maturity for the three-
month treasury bill. 

Flannery and 
Protopapadakis 
(2002) 

D FRED 

37 Unemployment (м) The number of unemployed as a 
percentage of the labor force. 

Boyd et al. (2005) M FRED 
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                         A.1:  Predictor set     (continued) 
 

38 Unemployment 
duration (м) 

Average weeks of unemployment, 
seasonally adjusted. 

Boyd et al. (2005) M FRED 

39 Volatility liquidity Monthly standard deviation of daily 
dollar trading volume. 

Gu et al. (2018) D -- 

40 Volatility earnings  Monthly standard deviation of daily 
returns. 

Park et al. (2019) D -- 

41 Volatility idiocincratic Monthly standard deviation of 
residuals from the one-factor model. 

Ali, Hwang and 
Trombley (2003) 

D -- 

42 Yield spread 30Y-10Y 30 year minus the 10 year treasury 
bond yield. 

Chen, Rossand 
Roll (1986) 

D FRED 

43 Yield spread 10Y-2Y 10 year minus the 2 year treasury 
bond yield. 

Chen, Ross and 
Roll (1986) 

D FRED 

44 Yield spread 2Y-3M 2 year minus the 3 month treasury 
bond yield. 

Chen, Ross and 
Roll (1986) 

D FRED 

Note: the variables with subscripts (ѡ), (м) and (ϙ) are delayed by a week, month and three months, respectively, to avoid 

look-ahead biases. To avoid a zero-bias, the scaling of the weekly, monthly and quarterly predictors is done by taking the 

mean and standard deviation of the non-zero values (see Section 2.10). 
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A.2:  Hyperparameter framework 

Hyperparameter Search distribution  

Learning rate 10log (η)  with η ∈ (0.0001, 0.01), evenly spaced 
L1 penalty 10log (ℓ1) with ℓ1 ∈ (0.0001, 0.05), evenly spaced  
L2 penalty 10log (ℓ2) with ℓ2 ∈ (0.0001, 0.05), evenly spaced 
Batch size [64, 96, 128, 256] 
Neurons, first layer [1, 2, 3, …., 44] 
Optimizer [Adam, Adagrad, RMSProp, SGD] 
Patience 2 
Ensemble size 10 
Gridsearch iterations 250 
 

Note: the log distribution of both the learning rate and penalty terms assures that the distribution is skewed 

to the right, stimulating the selection of more sensible parameter values.  

 
 
 
 
 
 

A.3:  Analyzed financial assets 

ETF Description Expense Ratio Asset Class 

BND Vanguard Total Bond Market ETF 0.05 US Fixed Income 
VTI Vanguard Total Stock Market ETF 0.04 US Equities 
VNQ Vanguard Real Estate ETF 0.12 US Real Estate 
VOE Vanguard Mid-Cap value ETF 0.07 US Equities 
VOT Vanguard Mid-Cap growth ETF 0.07 US Equities 
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A.4: Back propagation algorithm 

 
The back propgation algorithm is used to efficiently evaluate the gradient, i.e. compute the first order 

derivatives of the loss function with regards to the network weights.  In order to implement back 

propagation, the activation function should be differentiable and monotonically increasing. For 

simplicity, we apply the algorithm on the feed forward network with one hidden layer, as visualized in 

Fig. 2. 

 

For purpose of derivation, we define 𝑥𝑗𝑖 as the 𝑖th input to node 𝑗, 𝑤𝑗𝑖 as the weight between the 𝑖th 

input and the node 𝑗, 𝑧𝑗 as the weighted sum of the input for unit 𝑗, i.e. 𝑧𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑗𝑖
 
𝑖 , and 𝑎𝑗 as the 

activated value of unit 𝑗, i.e 𝑎𝑗 = 𝜑(𝑧𝑗) where 𝜑(∙) is the ReLu activation function.  

 

First, we derive the error over the training set using the mean-squared error loss over all output units 

in the output layer. That is, 

𝐿 =
1

2
∑(𝑦𝑘 − 𝑎𝑘)

2

 

𝑘∈𝑂

 (A.1) 

 

Now, we can derive the partial derivative of the loss function w.r.t. to each weight  𝛿𝐿 𝑤𝑗𝑖⁄  required 

for the gradient in equation (2.19). Note that the weights can only influence the loss function through 

𝑧𝑗. Hence, by applying the chain rule we get: 

 

𝛿𝐿

𝛿𝑤𝑗𝑖
=
𝛿𝐿

𝛿𝑧𝑗

𝛿𝑧𝑗

𝛿𝑤𝑗𝑖
 ⇔

𝛿𝐿

𝛿𝑧𝑗

𝛿

𝛿𝑤𝑗𝑖
(∑ 𝑤𝑗𝑖𝑥𝑗𝑖

 

𝑖
) ⇔ 

𝛿𝐿

𝛿𝑧𝑗
𝑥𝑗𝑖  (A.2) 

 

Now, we proceed with finding 𝛿𝐿 𝛿𝑧𝑗⁄ . Using the chain rule, we obtain: 

 

𝛿𝐿

𝛿𝑧𝑗
=
𝛿𝐿

𝛿𝑎𝑗

𝛿𝑎𝑗

𝛿𝑧𝑗
  (A.3) 

 

Notice that 𝛿𝑎𝑗 𝛿𝑧𝑗⁄  is simply the derivative the activation function, in our case the ReLu. As a result 

we obtain: 

𝛿𝐿

𝛿𝑧𝑗
= {  

 0          𝑖𝑓 𝑧𝑗 < 0

𝛿𝐿

𝛿𝑎𝑗
     𝑖𝑓 𝑧𝑗 > 0

 (A.4) 
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A.4: Back propagation algorithm       (continued) 

 

Finally, we have to find  𝛿𝐿 𝛿𝑎𝑗⁄ : 

 

𝛿𝐿

𝛿𝑎𝑗
=

𝛿

𝛿𝑎𝑗
(
1

2
∑(𝑦𝑘 − 𝑎𝑘)

2

 

𝑘∈𝑂

) ⇔
𝛿

𝛿𝑎𝑗
(
1

2
(𝑦𝑗 − 𝑎𝑗)

2
) ⇔ −(𝑦𝑗 − 𝑎𝑗) (A.5) 

 

Notice that for all cases were 𝑘 ≠ 𝑗, the derivative will be zero. This allows us us to drop the summation 

over the output units. After substitution, we can derive the partial derivative of the loss function w.r.t. 

𝑤𝑗𝑖 as follows: 

 

𝛿𝐿

𝛿𝑤𝑗𝑖
= {

    0                           𝑖𝑓 𝑧𝑗 < 0

   −(𝑦𝑗 − 𝑎𝑗)𝑥𝑗𝑖     𝑖𝑓 𝑧𝑗 > 0
 (A.6) 

 

This therefore provides us with the partial derivatives of the weight connections between the hidden 

layer and the output layer. Similar steps can be conducted to derive the partial derivatives between 

the input layer and the hidden layer. The back propagation technique can be extended to allow for one 

or more layers.   

 

A modified version of  this algorithm, called backpropagation through time (BPTT), is used for RNNs 

(Gruslys et al., 2016).  

 

It is worth noting that, by adding a penalty term to our loss function as in equation (2.31), we have to 

add another part to equation (A.6). In specific, the derivative of the elastic net is calculated as follows: 

 

 

The sum of (A.6) and (A.7) then provides us with the partial derivative of the penalized loss function. 

These partial derivatives then determine the weight adjustments in the gradient descent algorithm.  

𝛿

𝛿𝑤𝑗𝑖
(𝜆1|𝑤𝑗𝑖| + 𝜆2𝑤𝑗𝑖

2) = {
   − 𝜆1 + 2𝜆2𝑤𝑗𝑖   𝑖𝑓 𝑤𝑗𝑖 < 0

      𝜆1 + 2𝜆2𝑤𝑗𝑖    𝑖𝑓 𝑤𝑗𝑖 > 0
 (A.7) 
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A.5: Derivation of portfolio optimization objective 

 
As demonstrated by Baltas et al. (2013), the original risk-parity objective: 

 

𝑤𝑖 ∙ 𝑀𝐶𝑅𝑖 = constant , ∀𝑖 (A.8) 

 

can be rephrased into a non-linear constrained optimization problem: 

 

max ∑log (𝑤𝑖,𝑡)

𝑁

𝑖=1

 𝑠. 𝑡. 𝜎𝑝,𝑡 ≡ √𝒘𝒕
𝑻 ∙ 𝚺𝒕 ∙ 𝒘𝒕 < 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 (A.9) 

 

with the constraint that ∑ 𝑤𝑖,𝑡 = 1
𝑁
𝑖=1  applied through normalization after the optimization procedure.  

The corresponding Lagrangian is then calculated as follows: 

 

ℒ(𝒘𝒕) =  ∑𝑙𝑜𝑔(𝑤𝑖,𝑡)

𝑁

𝑖=1

− 𝜆(𝜎𝑝,𝑡 − 𝜎𝑡𝑎𝑟𝑔𝑒𝑡) (A.10) 

 

From this, the partial derivatives of the Lagrangian with respect to each portfolio weight are calculated 

as follows: 

𝛿ℒ(𝒘𝒕)

𝛿𝑤𝑖,𝑡
=

1

𝑤𝑖,𝑡
− 𝜆(

𝜎𝑝,𝑡
𝑤𝑖,𝑡

) , ∀𝑖  (A.11) 

 

Note that  𝜎𝑡,𝑝 𝑤𝑡,𝑖⁄ = 𝑀𝐶𝑅𝑡,𝑖. Hence, setting the above equation equal to zero and substitution 

therefore yields: 

 

1

𝑤𝑖,𝑡
− 𝜆(𝑀𝐶𝑅𝑖,𝑡) = 0 ⇔ 𝑤𝑖,𝑡 ∙ 𝑀𝐶𝑅𝑖,𝑡 =

1

𝜆
, ∀𝑖 (A.12) 

 

This implies that the constrained optimization requires the total contribution of risk of each asset to 

equal a constant:  the reciprocal of the Lagrangian multiplier 𝜆.  In other words, the risk parity objective 

is satisfied. 

 
 
 
 
 



62 
 

A.5: Derivation of portfolio optimization objective       (continued) 

 
By applying the same trick, we can assure that the contribution of each asset to the total portfolio 

volatility is proportional to a non-negative asset-specific score, 𝑠𝑖.  That is, after multiplying log (𝑤𝑖,𝑡) 

with 𝑠𝑖 in the objective function, we obtain: 

 

ℒ(𝒘𝑡) =  ∑𝑠𝑖,𝑡 ∙ 𝑙𝑜𝑔(𝑤𝑖,𝑡)

𝑁

𝑖=1

− 𝜆(𝜎𝑝,𝑡 − 𝜎𝑇𝐺𝑇) (A.13) 

 

Then, after calculating the partial derivatives of the Langrarian and equating these to zero, we obtain: 

 

𝑤𝑖,𝑡 ∙ 𝑀𝐶𝑅𝑖,𝑡 =
𝑠𝑖,𝑡
𝜆
, ∀𝑖 (A.14) 

 

That is, the total contribution to risk of each asset is equal to a certain positive asset-specific score 

scaled by the inverse of the Lagrangian multiplier, 𝜆. Consequently, the assets contribute an amount 

to overall volatility proportional to a non-negative asset-specific score: 

 

𝑤𝑖,𝑡 ∙ 𝑀𝐶𝑅𝑖,𝑡 ∝ 𝑠𝑖,𝑡 , ∀𝑖 (A.15) 

 

Finally, we can allow for short selling and negative asset specific scores by assuring that 𝑤𝑖,𝑡 > 0  if 

𝑠𝑖,𝑡 > 0 and 𝑤𝑖,𝑡 < 0 if 𝑠𝑖,𝑡 < 0, while wrapping absolute values around the weights and asset specific 

score in the objective function: 

 

                                               maximize:
𝒘𝑡

      ∑ |si,t| ∙ log(|𝑤𝑖,𝑡|)
𝑁
𝑖=1  

                                                subject to:      𝜎𝑝,𝑡 ≡ √𝒘𝑡
𝑻 ∙ 𝚺𝑡 ∙ 𝒘𝑡 < 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 

                                                                         𝑤𝑖,𝑡 > 0 𝑖𝑓 𝑠𝑖,𝑡 > 0 

                                                                         𝑤𝑖,𝑡 < 0 𝑖𝑓 𝑠𝑖,𝑡 < 0 

(A.16) 
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A.6: Augmented Dicky Fuller tests over loss differentials 
 

 

These table reports the calculated probabilities of  the Augmented Dicky Fuller test over the loss 

differentials of each method over financial asset ‘BND’. The null hypothesis of the ADF is that there is 

a unit root, with the alternative that there is no unit root. The plurality of tests reject the null and 

provide evidence in favour of covariance stationarity. The results can be regarded as a close 

approximation to the DM assumption, making the test statistics reliable. 

 

Calculated probabilities of Augmented Dicky Fuller tests for ‘BND’ loss differentials 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 -1.97 0.109 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
FNN2  0.049 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
FNN3   0.125 0.126 0.13 0.13 0.13 0.13 
LSTM1    <0.01 <0.01 0.493 <0.01 <0.01 
LSTM2     <0.01 <0.01 <0.01 <0.01 
LSTM3      <0.01 <0.01 <0.01 
GRU1       <0.01 <0.01 
GRU2        0.59 

 

Calculated probabilities of Augmented Dicky Fuller tests for ‘VNQ’ loss differentials 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
FNN2  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
FNN3   <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LSTM1    <0.01 <0.01 <0.01 <0.01 <0.01 
LSTM2     <0.01 <0.01 <0.01 <0.01 
LSTM3      <0.01 <0.01 <0.01 
GRU1       <0.01 <0.01 
GRU2        <0.01 

 

Calculated probabilities of Augmented Dicky Fuller tests for ‘VOE’ loss differentials 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 <0.01  <0.01  <0.01  0.01  <0.01  <0.01 <0.01 <0.01 
FNN2  0.01 0.07 <0.01 0.09 0.06  0.06 0.07 
FNN3   <0.01  <0.01  <0.01 <0.01 <0.01 <0.01 
LSTM1     <0.01 <0.01  <0.01  <0.01  <0.01 
LSTM2      <0.01 <0.01  <0.01  <0.01 
LSTM3       <0.01  <0.01  <0.01 
GRU1       <0.01  <0.01 
GRU2         <0.01 
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Calculated probabilities of Augmented Dicky Fuller tests for ‘VTI’ loss differentials 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 <0.01 <0.01 <0.01 0.04 0.08 <0.01 <0.01 <0.01 
FNN2  <0.01 0.14 0.02 0.02 0.06 0.06 0.07 
FNN3   <0.01 <0.01 <0.00 <0.01 <0.01 <0.01 
LSTM1    <0.01 <0.01 <0.01 <0.01 <0.01 
LSTM2     <0.01 <0.01 <0.01 <0.01 
LSTM3      <0.01 <0.01 <0.01 
GRU1       <0.01 <0.01 
GRU2        <0.01 

  

Calculated probabilities of Augmented Dicky Fuller tests for ‘VOT’ loss differentials 

Model FNN2 FNN3 LSTM1 LSTM2 LSTM3 GRU1 GRU2 GRU3 

FNN1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

FNN2  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
FNN3   0.03 0.03 0.04 0.03 0.03 0.03 

LSTM1    0.09 0.09 <0.01 0.08 0.07 
LSTM2     0.18 <0.01 <0.01 <0.01 
LSTM3      <0.01 <0.01 <0.01 
GRU1       <0.01 <0.01 
GRU2        <0.01 
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A.7: Robustness of portfolios (incl. ‘BND’) to risk preference  

 

This figure demonstrates the out-of-sample maximum draw down of all the considered network-based portfolios 

based on hunderd different risk preferences. The horizontal orange line indicates the MMD corresponding to 

𝜎𝑇𝐺𝑇 = 10%. In line with Section 4.1 and 4.2, we expect the noise of the results to stem from the inability of the 

networks to accurately forecast ‘BND’ returns using the implemented predictor set. 
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